Autolysis Affects the Iron Cargo of Ferritins in Neurons and Glial Cells at Different Rates in the Human Brain.
Autolysis
Energy-filtered transmission electron microscopy
Ferritin
Human brain
Inductively coupled plasma mass spectrometry
Quantitative magnetic resonance imaging
Journal
Cellular and molecular neurobiology
ISSN: 1573-6830
Titre abrégé: Cell Mol Neurobiol
Pays: United States
ID NLM: 8200709
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
06
12
2022
accepted:
27
02
2023
medline:
12
7
2023
pubmed:
16
3
2023
entrez:
15
3
2023
Statut:
ppublish
Résumé
Iron is known to accumulate in neurological disorders, so a careful balance of the iron concentration is essential for healthy brain functioning. An imbalance in iron homeostasis could arise due to the dysfunction of proteins involved in iron homeostasis. Here, we focus on ferritin-the primary iron storage protein of the brain. In this study, we aimed to improve a method to measure ferritin-bound iron in the human post-mortem brain, and to discern its distribution in particular cell types and brain regions. Though it is known that glial cells and neurons differ in their ferritin concentration, the change in the number and distribution of iron-filled ferritin cores between different cell types during autolysis has not been revealed yet. Here, we show the cellular and region-wide distribution of ferritin in the human brain using state-of-the-art analytical electron microscopy. We validated the concentration of iron-filled ferritin cores to the absolute iron concentration measured by quantitative MRI and inductively coupled plasma mass spectrometry. We show that ferritins lose iron from their cores with the progression of autolysis whereas the overall iron concentrations were unaffected. Although the highest concentration of ferritin was found in glial cells, as the total ferritin concentration increased in a patient, ferritin accumulated more in neurons than in glial cells. Summed up, our findings point out the unique behaviour of neurons in storing iron during autolysis and explain the differences between the absolute iron concentrations and iron-filled ferritin in a cell-type-dependent manner in the human brain. The rate of loss of the iron-filled ferritin cores during autolysis is higher in neurons than in glial cells.
Identifiants
pubmed: 36920627
doi: 10.1007/s10571-023-01332-w
pii: 10.1007/s10571-023-01332-w
pmc: PMC10333380
doi:
Substances chimiques
Iron
E1UOL152H7
Ferritins
9007-73-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2909-2923Subventions
Organisme : Austrian Science Foundation (FWF)
ID : P 29370
Informations de copyright
© 2023. The Author(s).
Références
Neural Regen Res. 2013 Jan 5;8(1):6-12
pubmed: 25206366
J Struct Biol. 2006 Jan;153(1):42-54
pubmed: 16364657
J Struct Biol. 2004 Aug;147(2):166-78
pubmed: 15193645
Front Cell Dev Biol. 2021 Feb 18;9:629503
pubmed: 33681208
Biochim Biophys Acta. 1996 Jul 31;1275(3):161-203
pubmed: 8695634
J Anat. 2006 May;208(5):565-75
pubmed: 16637879
J Neurochem. 1958 Oct;3(1):41-51
pubmed: 13611557
J Trace Elem Med Biol. 2014 Jan;28(1):13-7
pubmed: 24075790
Prog Neurobiol. 2022 Jun;213:102264
pubmed: 35283239
Nanotechnology. 2016 Nov 18;27(46):46LT02
pubmed: 27734804
J Trace Elem Med Biol. 2014 Jan;28(1):1-7
pubmed: 24188895
Parkinsonism Relat Disord. 2011 Jul;17(6):423-30
pubmed: 21550835
Neuroimage. 2012 Feb 1;59(3):2625-35
pubmed: 21925274
BMC Neurosci. 2005 Jan 24;6:3
pubmed: 15667655
Radiology. 2010 Nov;257(2):455-62
pubmed: 20843991
Glia. 2009 Apr 1;57(5):467-78
pubmed: 18837051
J Nutr. 2002 Sep;132(9):2769-74
pubmed: 12221243
Arch Histol Cytol. 2008 Dec;71(4):205-22
pubmed: 19359804
Proc (Bayl Univ Med Cent). 2006 Jul;19(3):239-45
pubmed: 17252042
Neuroimage. 2009 Aug 15;47(2):493-500
pubmed: 19442747
J Neurochem. 2004 Jan;88(1):233-45
pubmed: 14675167
J Cereb Blood Flow Metab. 2003 Jun;23(6):629-52
pubmed: 12796711
Curr Opin Struct Biol. 2019 Oct;58:138-148
pubmed: 31349127
Antioxid Redox Signal. 2008 Jun;10(6):997-1030
pubmed: 18327971
Acta Neuropathol Commun. 2019 Sep 3;7(1):144
pubmed: 31481118
Prog Neurobiol. 2020 Mar;186:101744
pubmed: 31870805
Neuroradiology. 1997 Aug;39(8):546-50
pubmed: 9272489
Neurology. 2007 May 22;68(21):1820-5
pubmed: 17515544
Brain. 1999 Apr;122 ( Pt 4):667-73
pubmed: 10219780
Nat Rev Mol Cell Biol. 2021 Apr;22(4):266-282
pubmed: 33495651
J Neural Transm (Vienna). 2011 Mar;118(3):329-35
pubmed: 21318635
Front Mol Neurosci. 2015 Jun 03;8:18
pubmed: 26089776
J Vis Exp. 2019 Apr 13;(146):
pubmed: 31033944
J Neurochem. 2006 Jun;97(6):1634-58
pubmed: 16805774
J Neurosci Res. 1990 Dec;27(4):595-611
pubmed: 2079720
Future Med Chem. 2010 Jan;2(1):51-64
pubmed: 20161623
Eur Neurol. 2022;85(6):415-423
pubmed: 35871519
J Transl Med. 2018 Feb 7;16(1):25
pubmed: 29415739
Lancet Neurol. 2014 Oct;13(10):1045-60
pubmed: 25231526
MAGMA. 2016 Sep;29 Suppl 1:401-75
pubmed: 27645225
J Biol Chem. 2011 Apr 15;286(15):13382-92
pubmed: 21296883
J Neurochem. 2007 Dec;103(5):1730-40
pubmed: 17953660
J Neurosci Res. 2001 Dec 15;66(6):1198-207
pubmed: 11746453
Glia. 1996 Jun;17(2):83-93
pubmed: 8776576
Sci Rep. 2016 Nov 09;6:36669
pubmed: 27827408
Biochem J. 2011 Mar 15;434(3):365-81
pubmed: 21348856