Lipocalin 2 in the Paraventricular Thalamic Nucleus Contributes to DSS-Induced Depressive-Like Behaviors.
Blood-brain barrier
Depression
Inflammatory bowel disease
Lcn2
Journal
Neuroscience bulletin
ISSN: 1995-8218
Titre abrégé: Neurosci Bull
Pays: Singapore
ID NLM: 101256850
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
21
09
2022
accepted:
23
01
2023
pmc-release:
01
08
2024
medline:
31
7
2023
pubmed:
16
3
2023
entrez:
15
3
2023
Statut:
ppublish
Résumé
The incidence rate of anxiety and depression is significantly higher in patients with inflammatory bowel diseases (IBD) than in the general population. The mechanisms underlying dextran sulfate sodium (DSS)-induced depressive-like behaviors are still unclear. We clarified that IBD mice induced by repeated administration of DSS presented depressive-like behaviors. The paraventricular thalamic nucleus (PVT) was regarded as the activated brain region by the number of c-fos-labeled neurons. RNA-sequencing analysis showed that lipocalin 2 (Lcn2) was upregulated in the PVT of mice with DSS-induced depressive behaviors. Upregulating Lcn2 from neuronal activity induced dendritic spine loss and the secreted protein induced chemokine expression and subsequently contributed to microglial activation leading to blood-brain barrier permeability. Moreover, Lcn2 silencing in the PVT alleviated the DSS-induced depressive-like behaviors. The present study demonstrated that elevated Lcn2 in the PVT is a critical factor for DSS-induced depressive behaviors.
Identifiants
pubmed: 36920644
doi: 10.1007/s12264-023-01047-4
pii: 10.1007/s12264-023-01047-4
pmc: PMC10387009
doi:
Substances chimiques
Lipocalin-2
0
Proto-Oncogene Proteins c-fos
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1263-1277Informations de copyright
© 2023. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences.
Références
Barberio B, Zamani M, Black CJ, Savarino EV, Ford AC. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: A systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2021, 6: 359–370.
pubmed: 33721557
doi: 10.1016/S2468-1253(21)00014-5
Jordi SBU, Lang BM, Auschra B, von Känel R, Biedermann L, Greuter T. Depressive symptoms predict clinical recurrence of inflammatory bowel disease. Inflamm Bowel Dis 2022, 28: 560–571.
pubmed: 34096587
doi: 10.1093/ibd/izab136
Moulton CD, Pavlidis P, Norton C, Norton S, Pariante C, Hayee B, et al. Depressive symptoms in inflammatory bowel disease: An extraintestinal manifestation of inflammation? Clin Exp Immunol 2019, 197: 308–318.
pubmed: 30762873
pmcid: 6693970
doi: 10.1111/cei.13276
Chen LM, Bao CH, Wu Y, Liang SH, Wang D, Wu LY, et al. Tryptophan-kynurenine metabolism: A link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation 2021, 18: 135.
pubmed: 34127024
pmcid: 8204445
doi: 10.1186/s12974-021-02175-2
Sandes S, Figueiredo N, Pedroso S, Sant’Anna F, Acurcio L, Abatemarco Junior M, et al. Weissella paramesenteroides WpK4 plays an immunobiotic role in gut-brain axis, reducing gut permeability, anxiety-like and depressive-like behaviors in murine models of colitis and chronic stress. Food Res Int 2020, 137: 109741.
pubmed: 33233306
doi: 10.1016/j.foodres.2020.109741
Natah SS, Mouihate A, Pittman QJ, Sharkey KA. Disruption of the blood-brain barrier during TNBS colitis. Neurogastroenterol Motil 2005, 17: 433–446.
pubmed: 15916631
doi: 10.1111/j.1365-2982.2005.00654.x
Do J, Woo J. From gut to brain: Alteration in inflammation markers in the brain of dextran sodium sulfate-induced colitis model mice. Clin Psychopharmacol Neurosci 2018, 16: 422–433.
pubmed: 30466215
pmcid: 6245298
doi: 10.9758/cpn.2018.16.4.422
McGinty JF, Otis JM. Heterogeneity in the paraventricular thalamus: The traffic light of motivated behaviors. Front Behav Neurosci 2020, 14: 590528.
pubmed: 33177999
pmcid: 7596164
doi: 10.3389/fnbeh.2020.590528
Barson JR, Mack NR, Gao WJ. The paraventricular nucleus of the thalamus is an important node in the emotional processing network. Front Behav Neurosci 2020, 14: 598469.
pubmed: 33192373
pmcid: 7658442
doi: 10.3389/fnbeh.2020.598469
Jha MK, Lee S, Park DH, Kook H, Park KG, Lee IK, et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015, 49: 135–156.
pubmed: 25511817
doi: 10.1016/j.neubiorev.2014.12.006
Olson B, Zhu X, Norgard MA, Diba P, Levasseur PR, Buenafe AC, et al. Chronic cerebral lipocalin 2 exposure elicits hippocampal neuronal dysfunction and cognitive impairment. Brain Behav Immun 2021, 97: 102–118.
pubmed: 34245812
pmcid: 8453133
doi: 10.1016/j.bbi.2021.07.002
Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018, 554: 317–322.
pubmed: 29446381
doi: 10.1038/nature25509
Peng Z, Li X, Li J, Dong Y, Gao Y, Liao Y, et al. Dlg1 knockout inhibits microglial activation and alleviates lipopolysaccharide-induced depression-like behavior in mice. Neurosci Bull 2021, 37: 1671–1682.
pubmed: 34490521
pmcid: 8643377
doi: 10.1007/s12264-021-00765-x
Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016, 21: 786–796.
pubmed: 27067014
doi: 10.1038/mp.2016.44
Chen Y, Zhang P, Lin X, Zhang H, Miao J, Zhou Y, et al. Mitophagy impairment is involved in sevoflurane-induced cognitive dysfunction in aged rats. Aging (Albany NY) 2020, 12: 17235–17256.
pubmed: 32903215
doi: 10.18632/aging.103673
Xia M, Li Z, Li S, Liang S, Li X, Chen B, et al. Sleep deprivation selectively down-regulates astrocytic 5-HT
pubmed: 32506374
pmcid: 7674526
doi: 10.1007/s12264-020-00524-4
Chen YR, Zhang SX, Fang M, Zhang P, Zhou YF, Yu X, et al. Egr2 contributes to age-dependent vulnerability to sevoflurane-induced cognitive deficits in mice. Acta Pharmacol Sin 2022, 43: 2828–2840.
pubmed: 35577909
doi: 10.1038/s41401-022-00915-5
Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T. Depression and anxiety in inflammatory bowel disease: Epidemiology, mechanisms and treatment. Nat Rev Gastroenterol Hepatol 2022, 19: 717–726.
pubmed: 35732730
doi: 10.1038/s41575-022-00634-6
Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol Psychiatry 2020, 25: 530–543.
pubmed: 31801966
doi: 10.1038/s41380-019-0615-x
Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci 2014, 8: 73.
pubmed: 24653686
pmcid: 3949320
doi: 10.3389/fnbeh.2014.00073
Das R, Emon MPZ, Shahriar M, Nahar Z, Islam SMA, Bhuiyan MA, et al. Higher levels of serum IL-1β and TNF-α are associated with an increased probability of major depressive disorder. Psychiatry Res 2021, 295: 113568.
pubmed: 33199026
doi: 10.1016/j.psychres.2020.113568
Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, et al. Lipocalin-2 Is a chemokine inducer in the central nervous system: Role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 2011, 286: 43855–43870.
pubmed: 22030398
pmcid: 3243551
doi: 10.1074/jbc.M111.299248
Jeon S, Jha MK, Ock J, Seo J, Jin M, Cho H, et al. Role of lipocalin-2-chemokine axis in the development of neuropathic pain following peripheral nerve injury. J Biol Chem 2013, 288: 24116–24127.
pubmed: 23836894
pmcid: 3745354
doi: 10.1074/jbc.M113.454140
Monif M, Reid CA, Powell KL, Drummond KJ, O’Brien TJ, Williams DA. Interleukin-1β has trophic effects in microglia and its release is mediated by P2X7R pore. J Neuroinflammation 2016, 13: 173.
pubmed: 27364756
pmcid: 4929731
doi: 10.1186/s12974-016-0621-8
Zhang L, Tan J, Jiang X, Qian W, Yang T, Sun X, et al. Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy. Biol Res 2017, 50: 26.
pubmed: 28870240
pmcid: 5584513
doi: 10.1186/s40659-017-0130-y
Watson PM, Anderson JM, Vanltallie CM, Doctrow SR. The tight-junction-specific protein ZO-1 is a component of the human and rat blood-brain barriers. Neurosci Lett 1991, 129: 6–10.
pubmed: 1922971
doi: 10.1016/0304-3940(91)90708-2
Jin M, Kim JH, Jang E, Lee YM, Han HS, Woo DK, et al. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2014, 34: 1306–1314.
pubmed: 24780901
pmcid: 4126090
doi: 10.1038/jcbfm.2014.83
Mondal A, Bose D, Saha P, Sarkar S, Seth R, Kimono D, et al. Lipocalin 2 induces neuroinflammation and blood-brain barrier dysfunction through liver-brain axis in murine model of nonalcoholic steatohepatitis. J Neuroinflammation 2020, 17: 201.
pubmed: 32622362
pmcid: 7335438
doi: 10.1186/s12974-020-01876-4
Gastfriend BD, Nishihara H, Canfield SG, Foreman KL, Engelhardt B, Palecek SP, et al. Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells. Elife 2021, 10: e70992.
pubmed: 34755601
pmcid: 8664294
doi: 10.7554/eLife.70992
Rozich JJ, Holmer A, Singh S. Effect of lifestyle factors on outcomes in patients with inflammatory bowel diseases. Am J Gastroenterol 2020, 115: 832–840.
pubmed: 32224703
pmcid: 7274876
doi: 10.14309/ajg.0000000000000608
Neuendorf R, Harding A, Stello N, Hanes D, Wahbeh H. Depression and anxiety in patients with Inflammatory Bowel Disease: A systematic review. J Psychosom Res 2016, 87: 70–80.
pubmed: 27411754
doi: 10.1016/j.jpsychores.2016.06.001
Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 2010, 59: 1192–1199.
pubmed: 20442201
doi: 10.1136/gut.2009.197822
Zhou G, Yu L, Fang L, Yang W, Yu T, Miao Y, et al. CD177
pubmed: 28468761
doi: 10.1136/gutjnl-2016-313535
Ancona A, Petito C, Iavarone I, Petito V, Galasso L, Leonetti A, et al. The gut-brain axis in irritable bowel syndrome and inflammatory bowel disease. Dig Liver Dis 2021, 53: 298–305.
pubmed: 33303315
doi: 10.1016/j.dld.2020.11.026
Li Y, Zhang H, Yang J, Zhan M, Hu X, Liu Y, et al. P2Y12 receptor as a new target for electroacupuncture relieving comorbidity of visceral pain and depression of inflammatory bowel disease. Chin Med 2021, 16: 139.
pubmed: 34930362
pmcid: 8686637
doi: 10.1186/s13020-021-00553-9
Nakagawasai O, Yamada K, Takahashi K, Odaira T, Sakuma W, Ishizawa D, et al. Liver hydrolysate prevents depressive-like behavior in an animal model of colitis: Involvement of hippocampal neurogenesis via the AMPK/BDNF pathway. Behav Brain Res 2020, 390: 112640.
pubmed: 32434062
doi: 10.1016/j.bbr.2020.112640
Zhu L, Wu L, Yu B, Liu X. The participation of a neurocircuit from the paraventricular thalamus to amygdala in the depressive like behavior. Neurosci Lett 2011, 488: 81–86.
pubmed: 21073922
doi: 10.1016/j.neulet.2010.11.007
Zhao D, Liu C, Cui M, Liu J, Meng F, Lian H, et al. The paraventricular thalamus input to central amygdala controls depression-related behaviors. Exp Neurol 2021, 342: 113744.
pubmed: 33965409
doi: 10.1016/j.expneurol.2021.113744
Ferreira AC, Pinto V, Mesquita SD, Novais A, Sousa JC, Correia-Neves M, et al. Lipocalin-2 is involved in emotional behaviors and cognitive function. Front Cell Neurosci 2013, 7: 122.
pubmed: 23908604
pmcid: 3725407
doi: 10.3389/fncel.2013.00122
Vichaya EG, Gross PS, Estrada DJ, Cole SW, Grossberg AJ, Evans SE, et al. Lipocalin-2 is dispensable in inflammation-induced sickness and depression-like behavior. Psychopharmacology 2019, 236: 2975–2982.
pubmed: 30806746
pmcid: 6710168
doi: 10.1007/s00213-019-05190-7
Liu Q, Feng R, Chen Y, Luo G, Yan H, Chen L, et al. Dcf1 triggers dendritic spine formation and facilitates memory acquisition. Mol Neurobiol 2018, 55: 763–775.
pubmed: 28058580
doi: 10.1007/s12035-016-0349-6
Zheng L, Liu Q, Wen T. Dendritic cell factor 1 deletion leads to developmental defects in mushroom-shaped dendritic spines. Neuroreport 2019, 30: 1008–1015.
pubmed: 31503203
doi: 10.1097/WNR.0000000000001315
Borkham-Kamphorst E, Drews F, Weiskirchen R. Induction of lipocalin-2 expression in acute and chronic experimental liver injury moderated by pro-inflammatory cytokines interleukin-1β through nuclear factor-κB activation. Liver Int 2011, 31: 656–665.
pubmed: 21457438
doi: 10.1111/j.1478-3231.2011.02495.x
Wei L, Du Y, Xie Y, Yu X, Chen H, Qiu Y. Lipocalin-2 regulates hippocampal microglial activation in poststroke depression. Front Aging Neurosci 2021, 13: 798335.
pubmed: 34966272
pmcid: 8710735
doi: 10.3389/fnagi.2021.798335
Bakke I, Walaas GA, Bruland T, Røyset ES, van Beelen Granlund A, Escudero-Hernández C, et al. Mucosal and faecal neutrophil gelatinase-associated lipocalin as potential biomarkers for collagenous colitis. J Gastroenterol 2021, 56: 914–927.
pubmed: 34414506
pmcid: 8478740
doi: 10.1007/s00535-021-01814-y
Stallhofer J, Friedrich M, Konrad-Zerna A, Wetzke M, Lohse P, Glas J, et al. Lipocalin-2 is a disease activity marker in inflammatory bowel disease regulated by IL-17A, IL-22, and TNF-α and modulated by IL23R genotype status. Inflamm Bowel Dis 2015, 21: 2327–2340.
pubmed: 26263469
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 2019, 10: 5816.
pubmed: 31862977
pmcid: 6925219
doi: 10.1038/s41467-019-13812-z
Harry GJ. Microglia during development and aging. Pharmacol Ther 2013, 139: 313–326.
pubmed: 23644076
pmcid: 3737416
doi: 10.1016/j.pharmthera.2013.04.013
Vojdani A, Vojdani E, Herbert M, Kharrazian D. Correlation between antibodies to bacterial lipopolysaccharides and barrier proteins in sera positive for ASCA and ANCA. Int J Mol Sci 2020, 21: 1381.
pubmed: 32085663
pmcid: 7073094
doi: 10.3390/ijms21041381
Toyota Y, Wei J, Xi G, Keep RF, Hua Y. White matter T2 hyperintensities and blood-brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: The role of lipocalin-2. CNS Neurosci Ther 2019, 25: 1207–1214.
pubmed: 31568658
pmcid: 6776746
doi: 10.1111/cns.13221
Oberoi R, Bogalle EP, Matthes LA, Schuett H, Koch AK, Grote K, et al. Lipocalin (LCN) 2 mediates pro-atherosclerotic processes and is elevated in patients with coronary artery disease. PLoS One 2015, 10: e0137924.
pubmed: 26367277
pmcid: 4569430
doi: 10.1371/journal.pone.0137924
Guo P, Yang J, Jia D, Moses MA, Auguste DT. ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer. Theranostics 2016, 6: 1–13.
pubmed: 26722369
pmcid: 4679350
doi: 10.7150/thno.12167
Talley S, Valiauga R, Anderson L, Cannon AR, Choudhry MA, Campbell EM. DSS-induced inflammation in the colon drives a proinflammatory signature in the brain that is ameliorated by prophylactic treatment with the S100A9 inhibitor paquinimod. J Neuroinflammation 2021, 18: 263.
pubmed: 34758843
pmcid: 8578918
doi: 10.1186/s12974-021-02317-6