Pseudotyped Viruses for Mammarenavirus.
Arenaviruses
Lassa virus
Lentiviral vectors
Lymphocytic choriomeningitis virus
MLV-based vectors
Mammarenavirus
Pseudotyped viruses
VSV-based vectors
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2023
2023
Historique:
entrez:
15
3
2023
pubmed:
16
3
2023
medline:
21
3
2023
Statut:
ppublish
Résumé
Mammarenaviruses are classified into New World arenaviruses (NW) and Old World arenaviruses (OW). The OW arenaviruses include the first discovered mammarenavirus-lymphocytic choriomeningitis virus (LCMV) and the highly lethal Lassa virus (LASV). Mammarenaviruses are transmitted to human by rodents, resulting in severe acute infections and hemorrhagic fever. Pseudotyped viruses have been widely used as a tool in the study of mammarenaviruses. HIV-1, SIV, FIV-based lentiviral vectors, VSV-based vectors, MLV-based vectors, and reverse genetic approaches have been applied in the construction of pseudotyped mammarenaviruses. Pseudotyped mammarenaviruses are commonly used in receptor research, neutralizing antibody detection, inhibitor screening, viral virulence studies, functional analysis of N-linked glycans, and studies of viral infection, endocytosis, and fusion mechanisms.
Identifiants
pubmed: 36920703
doi: 10.1007/978-981-99-0113-5_15
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
279-297Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Références
Walker, P.J., et al.: Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 166, 2633–2648 (2021). https://doi.org/10.1007/s00705-021-05156-1
doi: 10.1007/s00705-021-05156-1
pubmed: 34231026
Briese, T., et al.: Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 5, e1000455 (2009). https://doi.org/10.1371/journal.ppat.1000455
doi: 10.1371/journal.ppat.1000455
pubmed: 19478873
pmcid: 2680969
Wiebenga, N.H.: Immunologic studies of Tacaribe, Junin and Machupo viruses. Am. J. Trop. Med. Hyg. 14, 802–808 (1965). https://doi.org/10.4269/ajtmh.1965.14.802
doi: 10.4269/ajtmh.1965.14.802
pubmed: 5829141
Radoshitzky, S.R., et al.: Past, present, and future of arenavirus taxonomy. Arch. Virol. 160, 1851–1874 (2015). https://doi.org/10.1007/s00705-015-2418-y
doi: 10.1007/s00705-015-2418-y
pubmed: 25935216
McCormick, J.B., et al.: Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314, 20–26 (1986). https://doi.org/10.1056/NEJM198601023140104
doi: 10.1056/NEJM198601023140104
pubmed: 3940312
Maes, P., et al.: Taxonomy of the order Bunyavirales: second update 2018. Arch. Virol. 164, 927–941 (2019). https://doi.org/10.1007/s00705-018-04127-3
doi: 10.1007/s00705-018-04127-3
pubmed: 30663021
pmcid: 6581445
Knipe, D.M., Howley, P.M.: Fields Virology, 6th edn. Lippincott Williams & Wilkins (2013)
Jae, L.T., et al.: Virus entry. Lassa virus entry requires a trigger-induced receptor switch. Science. 344, 1506–1510 (2014). https://doi.org/10.1126/science.1252480
doi: 10.1126/science.1252480
pubmed: 24970085
pmcid: 4239993
McCormick, J.B.: Clinical, epidemiologic, and therapeutic aspects of Lassa fever. Med. Microbiol. Immunol. 175, 153–155 (1986)
doi: 10.1007/BF02122438
pubmed: 3724661
Lo Iacono, G., et al.: Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of Lassa fever. PLoS Negl. Trop. Dis. 9, e3398 (2015). https://doi.org/10.1371/journal.pntd.0003398
doi: 10.1371/journal.pntd.0003398
pubmed: 25569707
pmcid: 4288732
Coyle, A.L.: Lassa fever. Nursing. 46, 69–70 (2016). https://doi.org/10.1097/01.NURSE.0000482873.70955.7b
doi: 10.1097/01.NURSE.0000482873.70955.7b
pubmed: 27333233
Merson, L., et al.: Clinical characterization of Lassa fever: A systematic review of clinical reports and research to inform clinical trial design. PLoS Negl. Trop. Dis. 15, e0009788 (2021). https://doi.org/10.1371/journal.pntd.0009788
doi: 10.1371/journal.pntd.0009788
pubmed: 34547033
pmcid: 8486098
Sogoba, N., Feldmann, H., Safronetz, D.: Lassa fever in West Africa: evidence for an expanded region of endemicity. Zoonoses Public Health. 59(Suppl 2), 43–47 (2012). https://doi.org/10.1111/j.1863-2378.2012.01469.x
doi: 10.1111/j.1863-2378.2012.01469.x
pubmed: 22958249
Laposova, K., Pastorekova, S., Tomaskova, J.: Lymphocytic choriomeningitis virus: invisible but not innocent. Acta Virol. 57, 160–170 (2013)
doi: 10.4149/av_2013_02_160
pubmed: 23600874
de la Torre, J.C.: Molecular and cell biology of the prototypic arenavirus LCMV: implications for understanding and combating hemorrhagic fever arenaviruses. Ann. N. Y. Acad. Sci. 1171(Suppl 1), E57–E64 (2009). https://doi.org/10.1111/j.1749-6632.2009.05048.x
doi: 10.1111/j.1749-6632.2009.05048.x
pubmed: 19751403
Fischer, S.A., et al.: Transmission of lymphocytic choriomeningitis virus by organ transplantation. N. Engl. J. Med. 354, 2235–2249 (2006). https://doi.org/10.1056/NEJMoa053240
doi: 10.1056/NEJMoa053240
pubmed: 16723615
Andersen, K.G., et al.: Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell. 162, 738–750 (2015). https://doi.org/10.1016/j.cell.2015.07.020
doi: 10.1016/j.cell.2015.07.020
pubmed: 26276630
pmcid: 4537774
Garnett, L.E., Strong, J.E.: Lassa fever: With 50 years of study, hundreds of thousands of patients and an extremely high disease burden, what have we learned? Curr. Opin. Virol. 37, 123–131 (2019). https://doi.org/10.1016/j.coviro.2019.07.009
doi: 10.1016/j.coviro.2019.07.009
pubmed: 31479990
Whitmer, S.L.M., et al.: New Lineage of Lassa Virus, Togo, 2016. Emerg. Infect. Dis. 24, 599–602 (2018). https://doi.org/10.3201/eid2403.171905
doi: 10.3201/eid2403.171905
pubmed: 29460758
pmcid: 5823357
Lukashevich, I.S., Paessler, S., de la Torre, J.C.: Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Res. 8 (2019). https://doi.org/10.12688/f1000research.16989.1
Raabe, V., Koehler, J.: Laboratory Diagnosis of Lassa Fever. J. Clin. Microbiol. 55, 1629–1637 (2017). https://doi.org/10.1128/JCM.00170-17
doi: 10.1128/JCM.00170-17
pubmed: 28404674
pmcid: 5442519
Fornuskova, A., Hiadlovska, Z., Macholan, M., Pialek, J., de Bellocq, J.G.: New Perspective on the Geographic Distribution and Evolution of Lymphocytic Choriomeningitis Virus, Central Europe. Emerg. Infect. Dis. 27, 2638–2647 (2021). https://doi.org/10.3201/eid2710.210224
doi: 10.3201/eid2710.210224
pubmed: 34545789
pmcid: 8462312
Albarino, C.G., et al.: High diversity and ancient common ancestry of lymphocytic choriomeningitis virus. Emerg. Infect. Dis. 16, 1093–1100 (2010). https://doi.org/10.3201/eid1607.091902
doi: 10.3201/eid1607.091902
pubmed: 20587180
pmcid: 3321910
Martinez-Sobrido, L., de la Torre, J.C.: Reporter-Expressing, Replicating-Competent Recombinant Arenaviruses. Viruses. 8 (2016). https://doi.org/10.3390/v8070197
Rodrigo, W.W., de la Torre, J.C., Martinez-Sobrido, L.: Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J. Virol. 85, 1684–1695 (2011). https://doi.org/10.1128/JVI.02229-10
doi: 10.1128/JVI.02229-10
pubmed: 21123370
Wright, E., et al.: Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. J. Gen. Virol. 89, 2204–2213 (2008). https://doi.org/10.1099/vir.0.2008/000349-0
doi: 10.1099/vir.0.2008/000349-0
pubmed: 18753230
pmcid: 2886951
Li, Q., et al.: An LASV GPC pseudotyped virus based reporter system enables evaluation of vaccines in mice under non-BSL-4 conditions. Vaccine. 35, 5172–5178 (2017). https://doi.org/10.1016/j.vaccine.2017.07.101
doi: 10.1016/j.vaccine.2017.07.101
pubmed: 28797730
Negre, D., et al.: Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 7, 1613–1623 (2000). https://doi.org/10.1038/sj.gt.3301292
doi: 10.1038/sj.gt.3301292
pubmed: 11083469
Negre, D., Cosset, F.L.: Vectors derived from simian immunodeficiency virus (SIV). Biochimie. 84, 1161–1171 (2002). https://doi.org/10.1016/s0300-9084(02)00036-6
doi: 10.1016/s0300-9084(02)00036-6
pubmed: 12595145
Duisit, G., et al.: Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol. Ther. 6, 446–454 (2002). https://doi.org/10.1006/mthe.2002.0690
doi: 10.1006/mthe.2002.0690
pubmed: 12377185
Johnston, J.C., et al.: Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 73, 4991–5000 (1999). https://doi.org/10.1128/JVI.73.6.4991-5000.1999
doi: 10.1128/JVI.73.6.4991-5000.1999
pubmed: 10233961
pmcid: 112543
Wang, G., et al.: Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J. Clin. Invest. 104, R55–R62 (1999). https://doi.org/10.1172/JCI8390
doi: 10.1172/JCI8390
pubmed: 10587528
pmcid: 483477
Dylla, D.E., Xie, L., Michele, D.E., Kunz, S., McCray Jr., P.B.: Altering alpha-dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism. Genet. Vaccines. Ther. 9, 8 (2011). https://doi.org/10.1186/1479-0556-9-8
doi: 10.1186/1479-0556-9-8
pubmed: 21477292
pmcid: 3080791
Stein, C.S., Martins, I., Davidson, B.L.: The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol. Ther. 11, 382–389 (2005). https://doi.org/10.1016/j.ymthe.2004.11.008
doi: 10.1016/j.ymthe.2004.11.008
pubmed: 15727934
Nie, J., et al.: Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes. Infect. 9, 680–686 (2020). https://doi.org/10.1080/22221751.2020.1743767
doi: 10.1080/22221751.2020.1743767
pubmed: 32207377
pmcid: 7144318
Fukushi, S., Tani, H., Yoshikawa, T., Saijo, M., Morikawa, S.: Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses. 4, 2097–2114 (2012). https://doi.org/10.3390/v4102097
doi: 10.3390/v4102097
pubmed: 23202455
pmcid: 3497043
Soneoka, Y., et al.: A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 23, 628–633 (1995)
doi: 10.1093/nar/23.4.628
pubmed: 7899083
pmcid: 306730
Beyer, W.R., Westphal, M., Ostertag, W., von Laer, D.: Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J. Virol. 76, 1488–1495 (2002). https://doi.org/10.1128/jvi.76.3.1488-1495.2002
doi: 10.1128/jvi.76.3.1488-1495.2002
pubmed: 11773421
pmcid: 135847
Miletic, H., et al.: Retroviral vectors pseudotyped with lymphocytic choriomeningitis virus. J. Virol. 73, 6114–6116 (1999). https://doi.org/10.1128/JVI.73.7.6114-6116.1999
doi: 10.1128/JVI.73.7.6114-6116.1999
pubmed: 10364368
pmcid: 112677
Lay Mendoza, M.F., Acciani, M.D., Levit, C.N., Santa Maria, C., Brindley, M.A.: Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins. Viruses. 12 (2020). https://doi.org/10.3390/v12121457
Cai, Y., et al.: Recombinant Lassa Virus Expressing Green Fluorescent Protein as a Tool for High-Throughput Drug Screens and Neutralizing Antibody Assays. Viruses. 10 (2018). https://doi.org/10.3390/v10110655
Fedeli, C., et al.: Axl Can Serve as Entry Factor for Lassa Virus Depending on the Functional Glycosylation of Dystroglycan. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.01613-17
Acciani, M.D., et al.: Ebola Virus Requires Phosphatidylserine Scrambling Activity for Efficient Budding and Optimal Infectivity. J. Virol. 95, e0116521 (2021). https://doi.org/10.1128/JVI.01165-21
doi: 10.1128/JVI.01165-21
pubmed: 34319156
Lee, A.M., et al.: Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J. Biol. Chem. 283, 18734–18742 (2008). https://doi.org/10.1074/jbc.M802089200
doi: 10.1074/jbc.M802089200
pubmed: 18474596
pmcid: 2441566
Torriani, G., et al.: Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. J. Virol. 93 (2019). https://doi.org/10.1128/JVI.01744-18
Tang, K., Zhang, X., Guo, Y.: Identification of the dietary supplement capsaicin as an inhibitor of Lassa virus entry. Acta Pharm. Sin. B. 10, 789–798 (2020). https://doi.org/10.1016/j.apsb.2020.02.014
doi: 10.1016/j.apsb.2020.02.014
pubmed: 32528827
pmcid: 7276894
Herring, S., et al.: Inhibition of Arenaviruses by Combinations of Orally Available Approved Drugs. Antimicrob. Agents Chemother. 65 (2021). https://doi.org/10.1128/AAC.01146-20
Steffens, S., et al.: Transduction of human glial and neuronal tumor cells with different lentivirus vector pseudotypes. J. Neuro-Oncol. 70, 281–288 (2004). https://doi.org/10.1007/s11060-004-6046-8
doi: 10.1007/s11060-004-6046-8
Zhang, C., Hu, B., Xiao, L., Liu, Y., Wang, P.: Pseudotyping lentiviral vectors with lymphocytic choriomeningitis virus glycoproteins for transduction of dendritic cells and in vivo immunization. Hum. Gene. Ther. Methods. 25, 328–338 (2014). https://doi.org/10.1089/hgtb.2014.105
doi: 10.1089/hgtb.2014.105
pubmed: 25416034
pmcid: 4268581
Shimojima, M., Kawaoka, Y.: Cell surface molecules involved in infection mediated by lymphocytic choriomeningitis virus glycoprotein. J. Vet. Med. Sci. 74, 1363–1366 (2012). https://doi.org/10.1292/jvms.12-0176
doi: 10.1292/jvms.12-0176
pubmed: 22673088
Volland, A., et al.: Heparan sulfate proteoglycans serve as alternative receptors for low affinity LCMV variants. PLoS Pathog. 17, e1009996 (2021). https://doi.org/10.1371/journal.ppat.1009996
doi: 10.1371/journal.ppat.1009996
pubmed: 34648606
pmcid: 8547738
Kunz, S., Rojek, J.M., Perez, M., Spiropoulou, C.F., Oldstone, M.B.: Characterization of the interaction of Lassa fever virus with its cellular receptor alpha-dystroglycan. J. Virol. 79, 5979–5987 (2005). https://doi.org/10.1128/JVI.79.10.5979-5987.2005
doi: 10.1128/JVI.79.10.5979-5987.2005
pubmed: 15857984
pmcid: 1091707
Reignier, T., et al.: Receptor use by pathogenic arenaviruses. Virology. 353, 111–120 (2006). https://doi.org/10.1016/j.virol.2006.05.018
doi: 10.1016/j.virol.2006.05.018
pubmed: 16797051
Jemielity, S., et al.: TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9, e1003232 (2013). https://doi.org/10.1371/journal.ppat.1003232
doi: 10.1371/journal.ppat.1003232
pubmed: 23555248
pmcid: 3610696
Brouillette, R.B., et al.: TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.00093-18
Radoshitzky, S.R., et al.: Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature. 446, 92–96 (2007). https://doi.org/10.1038/nature05539
doi: 10.1038/nature05539
pubmed: 17287727
pmcid: 3197705
Tani, H., et al.: Analysis of Lujo virus cell entry using pseudotype vesicular stomatitis virus. J. Virol. 88, 7317–7330 (2014). https://doi.org/10.1128/JVI.00512-14
doi: 10.1128/JVI.00512-14
pubmed: 24741091
pmcid: 4054455
Beyer, W.R., Popplau, D., Garten, W., von Laer, D., Lenz, O.: Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J. Virol. 77, 2866–2872 (2003). https://doi.org/10.1128/jvi.77.5.2866-2872.2003
doi: 10.1128/jvi.77.5.2866-2872.2003
pubmed: 12584310
pmcid: 149737
Vela, E.M., Zhang, L., Colpitts, T.M., Davey, R.A., Aronson, J.F.: Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology. 369, 1–11 (2007). https://doi.org/10.1016/j.virol.2007.07.014
doi: 10.1016/j.virol.2007.07.014
pubmed: 17698159
Hulseberg, C.E., Feneant, L., Szymanska, K.M., White, J.M.: Lamp1 Increases the Efficiency of Lassa Virus Infection by Promoting Fusion in Less Acidic Endosomal Compartments. MBio. 9 (2018). https://doi.org/10.1128/mBio.01818-17
Bulow, U., Govindan, R., Munro, J.B.: Acidic pH Triggers Lipid Mixing Mediated by Lassa Virus GP. Viruses. 12 (2020). https://doi.org/10.3390/v12070716
Markosyan, R.M., Marin, M., Zhang, Y., Cohen, F.S., Melikyan, G.B.: The late endosome-resident lipid bis(monoacylglycero)phosphate is a cofactor for Lassa virus fusion. PLoS Pathog. 17, e1009488 (2021). https://doi.org/10.1371/journal.ppat.1009488
doi: 10.1371/journal.ppat.1009488
pubmed: 34492091
pmcid: 8448326
Jahrling, P.B.: Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J. Med. Virol. 12, 93–102 (1983). https://doi.org/10.1002/jmv.1890120203
doi: 10.1002/jmv.1890120203
pubmed: 6619814
Cashman, K.A., et al.: Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation. Vaccine. 1, 262–277 (2013). https://doi.org/10.3390/vaccines1030262
doi: 10.3390/vaccines1030262
Zapata, J.C., et al.: Genetic variation in vitro and in vivo of an attenuated Lassa vaccine candidate. J. Virol. 88, 3058–3066 (2014). https://doi.org/10.1128/JVI.03035-13
doi: 10.1128/JVI.03035-13
pubmed: 24335292
pmcid: 3957910
Geisbert, T.W., et al.: Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2, e183 (2005). https://doi.org/10.1371/journal.pmed.0020183
doi: 10.1371/journal.pmed.0020183
pubmed: 15971954
pmcid: 1160587
Lukashevich, I.S., Pushko, P.: Vaccine platforms to control Lassa fever. Expert Rev. Vaccines. 15, 1135–1150 (2016). https://doi.org/10.1080/14760584.2016.1184575
doi: 10.1080/14760584.2016.1184575
pubmed: 27136941
Jiang, J., et al.: Immunogenicity of a protective intradermal DNA vaccine against Lassa virus in cynomolgus macaques. Hum. Vaccin. Immunother. 15, 2066–2074 (2019). https://doi.org/10.1080/21645515.2019.1616499
doi: 10.1080/21645515.2019.1616499
pubmed: 31071008
pmcid: 6773375
Wang, M., et al.: Construction and Immunological Evaluation of an Adenoviral Vector-Based Vaccine Candidate for Lassa Fever. Viruses. 13 (2021). https://doi.org/10.3390/v13030484
Jiang, J. et al. Multivalent DNA Vaccines as A Strategy to Combat Multiple Concurrent Epidemics: Mosquito-Borne and Hemorrhagic Fever Viruses. Viruses 13, https://doi.org/10.3390/v13030382 (2021)
Heinrich, M.L., et al.: Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Sci. Rep. 10, 16030 (2020). https://doi.org/10.1038/s41598-020-72539-w
doi: 10.1038/s41598-020-72539-w
pubmed: 32994446
pmcid: 7525497
Basu, A., Mills, D. M. & Bowlin, T. L. High-throughput screening of viral entry inhibitors using pseudotyped virus. Curr. Protoc. Pharmacol. Chapter 13, Unit 13B 13, https://doi.org/10.1002/0471141755.ph13b03s51 (2010)
Lee, A.M., Pasquato, A., Kunz, S.: Novel approaches in anti-arenaviral drug development. Virology. 411, 163–169 (2011). https://doi.org/10.1016/j.virol.2010.11.022
doi: 10.1016/j.virol.2010.11.022
pubmed: 21183197
Larson, R.A., et al.: Identification of a broad-spectrum arenavirus entry inhibitor. J. Virol. 82, 10768–10775 (2008). https://doi.org/10.1128/JVI.00941-08
doi: 10.1128/JVI.00941-08
pubmed: 18715909
pmcid: 2573164
Madu, I.G., et al.: A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathog. 14, e1007439 (2018). https://doi.org/10.1371/journal.ppat.1007439
doi: 10.1371/journal.ppat.1007439
pubmed: 30576397
pmcid: 6322784
Wang, P., et al.: Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.00954-18
Zhang, X., Tang, K., Guo, Y.: The antifungal isavuconazole inhibits the entry of Lassa virus by targeting the stable signal peptide-GP2 subunit interface of Lassa virus glycoprotein. Antivir. Res. 174, 104701 (2020). https://doi.org/10.1016/j.antiviral.2019.104701
doi: 10.1016/j.antiviral.2019.104701
pubmed: 31877348
Takenaga, T., et al.: CP100356 Hydrochloride, a P-Glycoprotein Inhibitor, Inhibits Lassa Virus Entry: Implication of a Candidate Pan-Mammarenavirus Entry Inhibitor. Viruses. 13 (2021). https://doi.org/10.3390/v13091763
Bederka, L.H., Bonhomme, C.J., Ling, E.L., Buchmeier, M.J.: Arenavirus stable signal peptide is the keystone subunit for glycoprotein complex organization. MBio. 5, e02063 (2014). https://doi.org/10.1128/mBio.02063-14
doi: 10.1128/mBio.02063-14
pubmed: 25352624
pmcid: 4217180
Shankar, S., et al.: Small-Molecule Fusion Inhibitors Bind the pH-Sensing Stable Signal Peptide-GP2 Subunit Interface of the Lassa Virus Envelope Glycoprotein. J. Virol. 90, 6799–6807 (2016). https://doi.org/10.1128/JVI.00597-16
doi: 10.1128/JVI.00597-16
pubmed: 27194767
pmcid: 4944282
Wang, J., et al.: A comparative high-throughput screening protocol to identify entry inhibitors of enveloped viruses. J. Biomol. Screen. 19, 100–107 (2014). https://doi.org/10.1177/1087057113494405
doi: 10.1177/1087057113494405
pubmed: 23821643
Yang, Y., et al.: A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with Traditional Chinese Medicines. J. Med. Virol. 89, 908–916 (2017). https://doi.org/10.1002/jmv.24705
doi: 10.1002/jmv.24705
pubmed: 27704591
Kumar, N., et al.: Characterization of virulence-associated determinants in the envelope glycoprotein of Pichinde virus. Virology. 433, 97–103 (2012). https://doi.org/10.1016/j.virol.2012.07.009
doi: 10.1016/j.virol.2012.07.009
pubmed: 22877842
Zhu, X., et al.: Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response. Virol. Sin. 36, 774–783 (2021). https://doi.org/10.1007/s12250-021-00358-y
doi: 10.1007/s12250-021-00358-y
pubmed: 33689141
pmcid: 7945000