Pseudotyped Viruses for Mammarenavirus.

Arenaviruses Lassa virus Lentiviral vectors Lymphocytic choriomeningitis virus MLV-based vectors Mammarenavirus Pseudotyped viruses VSV-based vectors

Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2023
Historique:
entrez: 15 3 2023
pubmed: 16 3 2023
medline: 21 3 2023
Statut: ppublish

Résumé

Mammarenaviruses are classified into New World arenaviruses (NW) and Old World arenaviruses (OW). The OW arenaviruses include the first discovered mammarenavirus-lymphocytic choriomeningitis virus (LCMV) and the highly lethal Lassa virus (LASV). Mammarenaviruses are transmitted to human by rodents, resulting in severe acute infections and hemorrhagic fever. Pseudotyped viruses have been widely used as a tool in the study of mammarenaviruses. HIV-1, SIV, FIV-based lentiviral vectors, VSV-based vectors, MLV-based vectors, and reverse genetic approaches have been applied in the construction of pseudotyped mammarenaviruses. Pseudotyped mammarenaviruses are commonly used in receptor research, neutralizing antibody detection, inhibitor screening, viral virulence studies, functional analysis of N-linked glycans, and studies of viral infection, endocytosis, and fusion mechanisms.

Identifiants

pubmed: 36920703
doi: 10.1007/978-981-99-0113-5_15
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

279-297

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Références

Walker, P.J., et al.: Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 166, 2633–2648 (2021). https://doi.org/10.1007/s00705-021-05156-1
doi: 10.1007/s00705-021-05156-1 pubmed: 34231026
Briese, T., et al.: Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 5, e1000455 (2009). https://doi.org/10.1371/journal.ppat.1000455
doi: 10.1371/journal.ppat.1000455 pubmed: 19478873 pmcid: 2680969
Wiebenga, N.H.: Immunologic studies of Tacaribe, Junin and Machupo viruses. Am. J. Trop. Med. Hyg. 14, 802–808 (1965). https://doi.org/10.4269/ajtmh.1965.14.802
doi: 10.4269/ajtmh.1965.14.802 pubmed: 5829141
Radoshitzky, S.R., et al.: Past, present, and future of arenavirus taxonomy. Arch. Virol. 160, 1851–1874 (2015). https://doi.org/10.1007/s00705-015-2418-y
doi: 10.1007/s00705-015-2418-y pubmed: 25935216
McCormick, J.B., et al.: Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314, 20–26 (1986). https://doi.org/10.1056/NEJM198601023140104
doi: 10.1056/NEJM198601023140104 pubmed: 3940312
Maes, P., et al.: Taxonomy of the order Bunyavirales: second update 2018. Arch. Virol. 164, 927–941 (2019). https://doi.org/10.1007/s00705-018-04127-3
doi: 10.1007/s00705-018-04127-3 pubmed: 30663021 pmcid: 6581445
Knipe, D.M., Howley, P.M.: Fields Virology, 6th edn. Lippincott Williams & Wilkins (2013)
Jae, L.T., et al.: Virus entry. Lassa virus entry requires a trigger-induced receptor switch. Science. 344, 1506–1510 (2014). https://doi.org/10.1126/science.1252480
doi: 10.1126/science.1252480 pubmed: 24970085 pmcid: 4239993
McCormick, J.B.: Clinical, epidemiologic, and therapeutic aspects of Lassa fever. Med. Microbiol. Immunol. 175, 153–155 (1986)
doi: 10.1007/BF02122438 pubmed: 3724661
Lo Iacono, G., et al.: Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of Lassa fever. PLoS Negl. Trop. Dis. 9, e3398 (2015). https://doi.org/10.1371/journal.pntd.0003398
doi: 10.1371/journal.pntd.0003398 pubmed: 25569707 pmcid: 4288732
Coyle, A.L.: Lassa fever. Nursing. 46, 69–70 (2016). https://doi.org/10.1097/01.NURSE.0000482873.70955.7b
doi: 10.1097/01.NURSE.0000482873.70955.7b pubmed: 27333233
Merson, L., et al.: Clinical characterization of Lassa fever: A systematic review of clinical reports and research to inform clinical trial design. PLoS Negl. Trop. Dis. 15, e0009788 (2021). https://doi.org/10.1371/journal.pntd.0009788
doi: 10.1371/journal.pntd.0009788 pubmed: 34547033 pmcid: 8486098
Sogoba, N., Feldmann, H., Safronetz, D.: Lassa fever in West Africa: evidence for an expanded region of endemicity. Zoonoses Public Health. 59(Suppl 2), 43–47 (2012). https://doi.org/10.1111/j.1863-2378.2012.01469.x
doi: 10.1111/j.1863-2378.2012.01469.x pubmed: 22958249
Laposova, K., Pastorekova, S., Tomaskova, J.: Lymphocytic choriomeningitis virus: invisible but not innocent. Acta Virol. 57, 160–170 (2013)
doi: 10.4149/av_2013_02_160 pubmed: 23600874
de la Torre, J.C.: Molecular and cell biology of the prototypic arenavirus LCMV: implications for understanding and combating hemorrhagic fever arenaviruses. Ann. N. Y. Acad. Sci. 1171(Suppl 1), E57–E64 (2009). https://doi.org/10.1111/j.1749-6632.2009.05048.x
doi: 10.1111/j.1749-6632.2009.05048.x pubmed: 19751403
Fischer, S.A., et al.: Transmission of lymphocytic choriomeningitis virus by organ transplantation. N. Engl. J. Med. 354, 2235–2249 (2006). https://doi.org/10.1056/NEJMoa053240
doi: 10.1056/NEJMoa053240 pubmed: 16723615
Andersen, K.G., et al.: Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell. 162, 738–750 (2015). https://doi.org/10.1016/j.cell.2015.07.020
doi: 10.1016/j.cell.2015.07.020 pubmed: 26276630 pmcid: 4537774
Garnett, L.E., Strong, J.E.: Lassa fever: With 50 years of study, hundreds of thousands of patients and an extremely high disease burden, what have we learned? Curr. Opin. Virol. 37, 123–131 (2019). https://doi.org/10.1016/j.coviro.2019.07.009
doi: 10.1016/j.coviro.2019.07.009 pubmed: 31479990
Whitmer, S.L.M., et al.: New Lineage of Lassa Virus, Togo, 2016. Emerg. Infect. Dis. 24, 599–602 (2018). https://doi.org/10.3201/eid2403.171905
doi: 10.3201/eid2403.171905 pubmed: 29460758 pmcid: 5823357
Lukashevich, I.S., Paessler, S., de la Torre, J.C.: Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Res. 8 (2019). https://doi.org/10.12688/f1000research.16989.1
Raabe, V., Koehler, J.: Laboratory Diagnosis of Lassa Fever. J. Clin. Microbiol. 55, 1629–1637 (2017). https://doi.org/10.1128/JCM.00170-17
doi: 10.1128/JCM.00170-17 pubmed: 28404674 pmcid: 5442519
Fornuskova, A., Hiadlovska, Z., Macholan, M., Pialek, J., de Bellocq, J.G.: New Perspective on the Geographic Distribution and Evolution of Lymphocytic Choriomeningitis Virus, Central Europe. Emerg. Infect. Dis. 27, 2638–2647 (2021). https://doi.org/10.3201/eid2710.210224
doi: 10.3201/eid2710.210224 pubmed: 34545789 pmcid: 8462312
Albarino, C.G., et al.: High diversity and ancient common ancestry of lymphocytic choriomeningitis virus. Emerg. Infect. Dis. 16, 1093–1100 (2010). https://doi.org/10.3201/eid1607.091902
doi: 10.3201/eid1607.091902 pubmed: 20587180 pmcid: 3321910
Martinez-Sobrido, L., de la Torre, J.C.: Reporter-Expressing, Replicating-Competent Recombinant Arenaviruses. Viruses. 8 (2016). https://doi.org/10.3390/v8070197
Rodrigo, W.W., de la Torre, J.C., Martinez-Sobrido, L.: Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J. Virol. 85, 1684–1695 (2011). https://doi.org/10.1128/JVI.02229-10
doi: 10.1128/JVI.02229-10 pubmed: 21123370
Wright, E., et al.: Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. J. Gen. Virol. 89, 2204–2213 (2008). https://doi.org/10.1099/vir.0.2008/000349-0
doi: 10.1099/vir.0.2008/000349-0 pubmed: 18753230 pmcid: 2886951
Li, Q., et al.: An LASV GPC pseudotyped virus based reporter system enables evaluation of vaccines in mice under non-BSL-4 conditions. Vaccine. 35, 5172–5178 (2017). https://doi.org/10.1016/j.vaccine.2017.07.101
doi: 10.1016/j.vaccine.2017.07.101 pubmed: 28797730
Negre, D., et al.: Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 7, 1613–1623 (2000). https://doi.org/10.1038/sj.gt.3301292
doi: 10.1038/sj.gt.3301292 pubmed: 11083469
Negre, D., Cosset, F.L.: Vectors derived from simian immunodeficiency virus (SIV). Biochimie. 84, 1161–1171 (2002). https://doi.org/10.1016/s0300-9084(02)00036-6
doi: 10.1016/s0300-9084(02)00036-6 pubmed: 12595145
Duisit, G., et al.: Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol. Ther. 6, 446–454 (2002). https://doi.org/10.1006/mthe.2002.0690
doi: 10.1006/mthe.2002.0690 pubmed: 12377185
Johnston, J.C., et al.: Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 73, 4991–5000 (1999). https://doi.org/10.1128/JVI.73.6.4991-5000.1999
doi: 10.1128/JVI.73.6.4991-5000.1999 pubmed: 10233961 pmcid: 112543
Wang, G., et al.: Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J. Clin. Invest. 104, R55–R62 (1999). https://doi.org/10.1172/JCI8390
doi: 10.1172/JCI8390 pubmed: 10587528 pmcid: 483477
Dylla, D.E., Xie, L., Michele, D.E., Kunz, S., McCray Jr., P.B.: Altering alpha-dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism. Genet. Vaccines. Ther. 9, 8 (2011). https://doi.org/10.1186/1479-0556-9-8
doi: 10.1186/1479-0556-9-8 pubmed: 21477292 pmcid: 3080791
Stein, C.S., Martins, I., Davidson, B.L.: The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol. Ther. 11, 382–389 (2005). https://doi.org/10.1016/j.ymthe.2004.11.008
doi: 10.1016/j.ymthe.2004.11.008 pubmed: 15727934
Nie, J., et al.: Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes. Infect. 9, 680–686 (2020). https://doi.org/10.1080/22221751.2020.1743767
doi: 10.1080/22221751.2020.1743767 pubmed: 32207377 pmcid: 7144318
Fukushi, S., Tani, H., Yoshikawa, T., Saijo, M., Morikawa, S.: Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses. 4, 2097–2114 (2012). https://doi.org/10.3390/v4102097
doi: 10.3390/v4102097 pubmed: 23202455 pmcid: 3497043
Soneoka, Y., et al.: A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 23, 628–633 (1995)
doi: 10.1093/nar/23.4.628 pubmed: 7899083 pmcid: 306730
Beyer, W.R., Westphal, M., Ostertag, W., von Laer, D.: Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J. Virol. 76, 1488–1495 (2002). https://doi.org/10.1128/jvi.76.3.1488-1495.2002
doi: 10.1128/jvi.76.3.1488-1495.2002 pubmed: 11773421 pmcid: 135847
Miletic, H., et al.: Retroviral vectors pseudotyped with lymphocytic choriomeningitis virus. J. Virol. 73, 6114–6116 (1999). https://doi.org/10.1128/JVI.73.7.6114-6116.1999
doi: 10.1128/JVI.73.7.6114-6116.1999 pubmed: 10364368 pmcid: 112677
Lay Mendoza, M.F., Acciani, M.D., Levit, C.N., Santa Maria, C., Brindley, M.A.: Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins. Viruses. 12 (2020). https://doi.org/10.3390/v12121457
Cai, Y., et al.: Recombinant Lassa Virus Expressing Green Fluorescent Protein as a Tool for High-Throughput Drug Screens and Neutralizing Antibody Assays. Viruses. 10 (2018). https://doi.org/10.3390/v10110655
Fedeli, C., et al.: Axl Can Serve as Entry Factor for Lassa Virus Depending on the Functional Glycosylation of Dystroglycan. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.01613-17
Acciani, M.D., et al.: Ebola Virus Requires Phosphatidylserine Scrambling Activity for Efficient Budding and Optimal Infectivity. J. Virol. 95, e0116521 (2021). https://doi.org/10.1128/JVI.01165-21
doi: 10.1128/JVI.01165-21 pubmed: 34319156
Lee, A.M., et al.: Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J. Biol. Chem. 283, 18734–18742 (2008). https://doi.org/10.1074/jbc.M802089200
doi: 10.1074/jbc.M802089200 pubmed: 18474596 pmcid: 2441566
Torriani, G., et al.: Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. J. Virol. 93 (2019). https://doi.org/10.1128/JVI.01744-18
Tang, K., Zhang, X., Guo, Y.: Identification of the dietary supplement capsaicin as an inhibitor of Lassa virus entry. Acta Pharm. Sin. B. 10, 789–798 (2020). https://doi.org/10.1016/j.apsb.2020.02.014
doi: 10.1016/j.apsb.2020.02.014 pubmed: 32528827 pmcid: 7276894
Herring, S., et al.: Inhibition of Arenaviruses by Combinations of Orally Available Approved Drugs. Antimicrob. Agents Chemother. 65 (2021). https://doi.org/10.1128/AAC.01146-20
Steffens, S., et al.: Transduction of human glial and neuronal tumor cells with different lentivirus vector pseudotypes. J. Neuro-Oncol. 70, 281–288 (2004). https://doi.org/10.1007/s11060-004-6046-8
doi: 10.1007/s11060-004-6046-8
Zhang, C., Hu, B., Xiao, L., Liu, Y., Wang, P.: Pseudotyping lentiviral vectors with lymphocytic choriomeningitis virus glycoproteins for transduction of dendritic cells and in vivo immunization. Hum. Gene. Ther. Methods. 25, 328–338 (2014). https://doi.org/10.1089/hgtb.2014.105
doi: 10.1089/hgtb.2014.105 pubmed: 25416034 pmcid: 4268581
Shimojima, M., Kawaoka, Y.: Cell surface molecules involved in infection mediated by lymphocytic choriomeningitis virus glycoprotein. J. Vet. Med. Sci. 74, 1363–1366 (2012). https://doi.org/10.1292/jvms.12-0176
doi: 10.1292/jvms.12-0176 pubmed: 22673088
Volland, A., et al.: Heparan sulfate proteoglycans serve as alternative receptors for low affinity LCMV variants. PLoS Pathog. 17, e1009996 (2021). https://doi.org/10.1371/journal.ppat.1009996
doi: 10.1371/journal.ppat.1009996 pubmed: 34648606 pmcid: 8547738
Kunz, S., Rojek, J.M., Perez, M., Spiropoulou, C.F., Oldstone, M.B.: Characterization of the interaction of Lassa fever virus with its cellular receptor alpha-dystroglycan. J. Virol. 79, 5979–5987 (2005). https://doi.org/10.1128/JVI.79.10.5979-5987.2005
doi: 10.1128/JVI.79.10.5979-5987.2005 pubmed: 15857984 pmcid: 1091707
Reignier, T., et al.: Receptor use by pathogenic arenaviruses. Virology. 353, 111–120 (2006). https://doi.org/10.1016/j.virol.2006.05.018
doi: 10.1016/j.virol.2006.05.018 pubmed: 16797051
Jemielity, S., et al.: TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9, e1003232 (2013). https://doi.org/10.1371/journal.ppat.1003232
doi: 10.1371/journal.ppat.1003232 pubmed: 23555248 pmcid: 3610696
Brouillette, R.B., et al.: TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.00093-18
Radoshitzky, S.R., et al.: Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature. 446, 92–96 (2007). https://doi.org/10.1038/nature05539
doi: 10.1038/nature05539 pubmed: 17287727 pmcid: 3197705
Tani, H., et al.: Analysis of Lujo virus cell entry using pseudotype vesicular stomatitis virus. J. Virol. 88, 7317–7330 (2014). https://doi.org/10.1128/JVI.00512-14
doi: 10.1128/JVI.00512-14 pubmed: 24741091 pmcid: 4054455
Beyer, W.R., Popplau, D., Garten, W., von Laer, D., Lenz, O.: Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J. Virol. 77, 2866–2872 (2003). https://doi.org/10.1128/jvi.77.5.2866-2872.2003
doi: 10.1128/jvi.77.5.2866-2872.2003 pubmed: 12584310 pmcid: 149737
Vela, E.M., Zhang, L., Colpitts, T.M., Davey, R.A., Aronson, J.F.: Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology. 369, 1–11 (2007). https://doi.org/10.1016/j.virol.2007.07.014
doi: 10.1016/j.virol.2007.07.014 pubmed: 17698159
Hulseberg, C.E., Feneant, L., Szymanska, K.M., White, J.M.: Lamp1 Increases the Efficiency of Lassa Virus Infection by Promoting Fusion in Less Acidic Endosomal Compartments. MBio. 9 (2018). https://doi.org/10.1128/mBio.01818-17
Bulow, U., Govindan, R., Munro, J.B.: Acidic pH Triggers Lipid Mixing Mediated by Lassa Virus GP. Viruses. 12 (2020). https://doi.org/10.3390/v12070716
Markosyan, R.M., Marin, M., Zhang, Y., Cohen, F.S., Melikyan, G.B.: The late endosome-resident lipid bis(monoacylglycero)phosphate is a cofactor for Lassa virus fusion. PLoS Pathog. 17, e1009488 (2021). https://doi.org/10.1371/journal.ppat.1009488
doi: 10.1371/journal.ppat.1009488 pubmed: 34492091 pmcid: 8448326
Jahrling, P.B.: Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J. Med. Virol. 12, 93–102 (1983). https://doi.org/10.1002/jmv.1890120203
doi: 10.1002/jmv.1890120203 pubmed: 6619814
Cashman, K.A., et al.: Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation. Vaccine. 1, 262–277 (2013). https://doi.org/10.3390/vaccines1030262
doi: 10.3390/vaccines1030262
Zapata, J.C., et al.: Genetic variation in vitro and in vivo of an attenuated Lassa vaccine candidate. J. Virol. 88, 3058–3066 (2014). https://doi.org/10.1128/JVI.03035-13
doi: 10.1128/JVI.03035-13 pubmed: 24335292 pmcid: 3957910
Geisbert, T.W., et al.: Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2, e183 (2005). https://doi.org/10.1371/journal.pmed.0020183
doi: 10.1371/journal.pmed.0020183 pubmed: 15971954 pmcid: 1160587
Lukashevich, I.S., Pushko, P.: Vaccine platforms to control Lassa fever. Expert Rev. Vaccines. 15, 1135–1150 (2016). https://doi.org/10.1080/14760584.2016.1184575
doi: 10.1080/14760584.2016.1184575 pubmed: 27136941
Jiang, J., et al.: Immunogenicity of a protective intradermal DNA vaccine against Lassa virus in cynomolgus macaques. Hum. Vaccin. Immunother. 15, 2066–2074 (2019). https://doi.org/10.1080/21645515.2019.1616499
doi: 10.1080/21645515.2019.1616499 pubmed: 31071008 pmcid: 6773375
Wang, M., et al.: Construction and Immunological Evaluation of an Adenoviral Vector-Based Vaccine Candidate for Lassa Fever. Viruses. 13 (2021). https://doi.org/10.3390/v13030484
Jiang, J. et al. Multivalent DNA Vaccines as A Strategy to Combat Multiple Concurrent Epidemics: Mosquito-Borne and Hemorrhagic Fever Viruses. Viruses 13, https://doi.org/10.3390/v13030382 (2021)
Heinrich, M.L., et al.: Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Sci. Rep. 10, 16030 (2020). https://doi.org/10.1038/s41598-020-72539-w
doi: 10.1038/s41598-020-72539-w pubmed: 32994446 pmcid: 7525497
Basu, A., Mills, D. M. & Bowlin, T. L. High-throughput screening of viral entry inhibitors using pseudotyped virus. Curr. Protoc. Pharmacol. Chapter 13, Unit 13B 13, https://doi.org/10.1002/0471141755.ph13b03s51 (2010)
Lee, A.M., Pasquato, A., Kunz, S.: Novel approaches in anti-arenaviral drug development. Virology. 411, 163–169 (2011). https://doi.org/10.1016/j.virol.2010.11.022
doi: 10.1016/j.virol.2010.11.022 pubmed: 21183197
Larson, R.A., et al.: Identification of a broad-spectrum arenavirus entry inhibitor. J. Virol. 82, 10768–10775 (2008). https://doi.org/10.1128/JVI.00941-08
doi: 10.1128/JVI.00941-08 pubmed: 18715909 pmcid: 2573164
Madu, I.G., et al.: A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathog. 14, e1007439 (2018). https://doi.org/10.1371/journal.ppat.1007439
doi: 10.1371/journal.ppat.1007439 pubmed: 30576397 pmcid: 6322784
Wang, P., et al.: Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.00954-18
Zhang, X., Tang, K., Guo, Y.: The antifungal isavuconazole inhibits the entry of Lassa virus by targeting the stable signal peptide-GP2 subunit interface of Lassa virus glycoprotein. Antivir. Res. 174, 104701 (2020). https://doi.org/10.1016/j.antiviral.2019.104701
doi: 10.1016/j.antiviral.2019.104701 pubmed: 31877348
Takenaga, T., et al.: CP100356 Hydrochloride, a P-Glycoprotein Inhibitor, Inhibits Lassa Virus Entry: Implication of a Candidate Pan-Mammarenavirus Entry Inhibitor. Viruses. 13 (2021). https://doi.org/10.3390/v13091763
Bederka, L.H., Bonhomme, C.J., Ling, E.L., Buchmeier, M.J.: Arenavirus stable signal peptide is the keystone subunit for glycoprotein complex organization. MBio. 5, e02063 (2014). https://doi.org/10.1128/mBio.02063-14
doi: 10.1128/mBio.02063-14 pubmed: 25352624 pmcid: 4217180
Shankar, S., et al.: Small-Molecule Fusion Inhibitors Bind the pH-Sensing Stable Signal Peptide-GP2 Subunit Interface of the Lassa Virus Envelope Glycoprotein. J. Virol. 90, 6799–6807 (2016). https://doi.org/10.1128/JVI.00597-16
doi: 10.1128/JVI.00597-16 pubmed: 27194767 pmcid: 4944282
Wang, J., et al.: A comparative high-throughput screening protocol to identify entry inhibitors of enveloped viruses. J. Biomol. Screen. 19, 100–107 (2014). https://doi.org/10.1177/1087057113494405
doi: 10.1177/1087057113494405 pubmed: 23821643
Yang, Y., et al.: A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with Traditional Chinese Medicines. J. Med. Virol. 89, 908–916 (2017). https://doi.org/10.1002/jmv.24705
doi: 10.1002/jmv.24705 pubmed: 27704591
Kumar, N., et al.: Characterization of virulence-associated determinants in the envelope glycoprotein of Pichinde virus. Virology. 433, 97–103 (2012). https://doi.org/10.1016/j.virol.2012.07.009
doi: 10.1016/j.virol.2012.07.009 pubmed: 22877842
Zhu, X., et al.: Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response. Virol. Sin. 36, 774–783 (2021). https://doi.org/10.1007/s12250-021-00358-y
doi: 10.1007/s12250-021-00358-y pubmed: 33689141 pmcid: 7945000

Auteurs

Qianqian Li (Q)

Jiangsu Recbio Technology Co., Ltd., Taizhou, China.

Weijing Huang (W)

Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China.

Youchun Wang (Y)

Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. wangyc@nifdc.org.cn.
Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China. wangyc@nifdc.org.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH