Pseudotyped Viruses for the Alphavirus Chikungunya Virus.


Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2023
Historique:
entrez: 15 3 2023
pubmed: 16 3 2023
medline: 21 3 2023
Statut: ppublish

Résumé

Members of the genus Alphavirus are mostly mosquito-borne pathogens that cause disease in their vertebrate hosts. Chikungunya virus (CHIKV), which is one member of the genus Alphavirus [1], has been a major health problem in endemic areas since its re-emergence in 2006. CHIKV is transmitted to mammalian hosts by the Aedes mosquito, causing persistent debilitating symptoms in many cases. At present, there is no specific treatment or vaccine. Experiments involving live CHIKV need to be performed in BSL-3 facilities, which limits vaccine and drug research. The emergence of pseudotyped virus technology offered the potential for the development of a safe and effective evaluation method. In this chapter, we review the construction and application of pseudotyped CHIKVs, the findings from which have enhanced our understanding of CHIKV. This will, in turn, enable the exploration of promising therapeutic strategies in animal models, with the ultimate aim of developing effective treatments and vaccines against CHIKV and other related viruses.

Identifiants

pubmed: 36920704
doi: 10.1007/978-981-99-0113-5_16
doi:

Substances chimiques

Viral Vaccines 0

Types de publication

Review Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

299-312

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Références

Chen, R., et al.: ICTV Virus Taxonomy Profile: Togaviridae. J. Gen. Virol. 99, 761–762 (2018). https://doi.org/10.1099/jgv.0.001072
doi: 10.1099/jgv.0.001072 pubmed: 29745869
Josseran, L., et al.: Chikungunya disease outbreak, Reunion Island. Emerg. Infect. Dis. 12, 1994–1995 (2006). https://doi.org/10.3201/eid1212.060710
doi: 10.3201/eid1212.060710 pubmed: 17354339 pmcid: 3291364
Kalantri, S.P., Joshi, R., Riley, L.W.: Chikungunya epidemic: an Indian perspective. Natl. Med. J. India. 19, 315–322 (2006)
pubmed: 17343016
Guerrero-Arguero, I., et al.: Alphaviruses: host pathogenesis, immune response, and vaccine & treatment updates. J. Gen. Virol. 102, 1 (2021). https://doi.org/10.1099/jgv.0.001644
doi: 10.1099/jgv.0.001644
Miner, J.J., et al.: Chikungunya viral arthritis in the United States: a mimic of seronegative rheumatoid arthritis. Arthritis Rheumatol. 67, 1214–1220 (2015). https://doi.org/10.1002/art.39027
doi: 10.1002/art.39027 pubmed: 25605621 pmcid: 4591551
Schilte, C., et al.: Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl. Trop. Dis. 7, e2137 (2013). https://doi.org/10.1371/journal.pntd.0002137
doi: 10.1371/journal.pntd.0002137 pubmed: 23556021 pmcid: 3605278
Burt, F.J., Rolph, M.S., Rulli, N.E., Mahalingam, S., Heise, M.T.: Chikungunya: a re-emerging virus. Lancet. 379, 662–671 (2012). https://doi.org/10.1016/S0140-6736(11)60281-X
doi: 10.1016/S0140-6736(11)60281-X pubmed: 22100854
Narwal, M., et al.: Crystal structure of chikungunya virus nsP2 cysteine protease reveals a putative flexible loop blocking its active site. Int. J. Biol. Macromol. 116, 451–462 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.007
doi: 10.1016/j.ijbiomac.2018.05.007 pubmed: 29730006
Khan, A.H., et al.: Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol. 83, 3075–3084 (2002). https://doi.org/10.1099/0022-1317-83-12-3075
doi: 10.1099/0022-1317-83-12-3075 pubmed: 12466484
Hong, E.M., Perera, R., Kuhn, R.J.: Alphavirus capsid protein helix I controls a checkpoint in nucleocapsid core assembly. J. Virol. 80, 8848–8855 (2006). https://doi.org/10.1128/JVI.00619-06
doi: 10.1128/JVI.00619-06 pubmed: 16940497 pmcid: 1563918
Perera, R., Owen, K.E., Tellinghuisen, T.L., Gorbalenya, A.E., Kuhn, R.J.: Alphavirus nucleocapsid protein contains a putative coiled coil alpha-helix important for core assembly. J. Virol. 75, 1–10 (2001). https://doi.org/10.1128/JVI.75.1.1-10.2001
doi: 10.1128/JVI.75.1.1-10.2001 pubmed: 11119567 pmcid: 113891
Schwartz, O., Albert, M.L.: Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol. 8, 491–500 (2010). https://doi.org/10.1038/nrmicro2368
doi: 10.1038/nrmicro2368 pubmed: 20551973
Ashbrook, A.W., et al.: Residue 82 of the chikungunya virus E2 attachment protein modulates viral dissemination and arthritis in mice. J. Virol. 88, 12180–12192 (2014). https://doi.org/10.1128/JVI.01672-14
doi: 10.1128/JVI.01672-14 pubmed: 25142598 pmcid: 4248890
Smith, T.J., et al.: Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy. Proc. Natl. Acad. Sci. U. S. A. 92, 10648–10652 (1995)
doi: 10.1073/pnas.92.23.10648 pubmed: 7479858 pmcid: 40669
Li, L., Jose, J., Xiang, Y., Kuhn, R.J., Rossmann, M.G.: Structural changes of envelope proteins during alphavirus fusion. Nature. 468, 705–708 (2010). https://doi.org/10.1038/nature09546
doi: 10.1038/nature09546 pubmed: 21124457 pmcid: 3057476
Kuo, S.C., et al.: Cell-based analysis of chikungunya virus E1 protein in membrane fusion. J. Biomed. Sci. 19, 44 (2012). https://doi.org/10.1186/1423-0127-19-44
doi: 10.1186/1423-0127-19-44 pubmed: 22520648 pmcid: 3384457
Snyder, J.E., et al.: Functional characterization of the alphavirus TF protein. J. Virol. 87, 8511–8523 (2013). https://doi.org/10.1128/JVI.00449-13
doi: 10.1128/JVI.00449-13 pubmed: 23720714 pmcid: 3719798
Basore, K., et al.: Cryo-EM structure of chikungunya virus in complex with the Mxra8 receptor. Cell. 177, 1725–1737 e1716 (2019). https://doi.org/10.1016/j.cell.2019.04.006
doi: 10.1016/j.cell.2019.04.006 pubmed: 31080061 pmcid: 7227486
Verma, J., Subbarao, N.: In silico identification of small molecule protein-protein interaction inhibitors: targeting hotspot regions at the interface of MXRA8 and CHIKV envelope protein. J. Biomol. Struct. Dyn. 1, 19 (2022). https://doi.org/10.1080/07391102.2022.2048080
doi: 10.1080/07391102.2022.2048080
Yin, P., Kielian, M.: BHK-21 cell clones differ in chikungunya virus infection and MXRA8 receptor expression. Viruses. 13 (2021). https://doi.org/10.3390/v13060949
Schuffenecker, I., et al.: Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 3, e263 (2006). https://doi.org/10.1371/journal.pmed.0030263
doi: 10.1371/journal.pmed.0030263 pubmed: 16700631 pmcid: 1463904
Arankalle, V.A., et al.: Genetic divergence of chikungunya viruses in India (1963-2006) with special reference to the 2005-2006 explosive epidemic. J. Gen. Virol. 88, 1967–1976 (2007). https://doi.org/10.1099/vir.0.82714-0
doi: 10.1099/vir.0.82714-0 pubmed: 17554030
Pialoux, G., Gauzere, B.A., Jaureguiberry, S., Strobel, M.: Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7, 319–327 (2007). https://doi.org/10.1016/S1473-3099(07)70107-X
doi: 10.1016/S1473-3099(07)70107-X pubmed: 17448935
Lanciotti, R.S., Valadere, A.M.: Transcontinental movement of Asian genotype chikungunya virus. Emerg. Infect. Dis. 20, 1400–1402 (2014). https://doi.org/10.3201/eid2008.140268
doi: 10.3201/eid2008.140268 pubmed: 25076384 pmcid: 4111183
Sy, A.K., et al.: Molecular characterization of chikungunya virus, Philippines, 2011-2013. Emerg. Infect. Dis. 22, 887–890 (2016). https://doi.org/10.3201/eid2205.151268
doi: 10.3201/eid2205.151268 pubmed: 27088593 pmcid: 4861512
Powers, A.M., Brault, A.C., Tesh, R.B., Weaver, S.C.: Re-emergence of chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol. 81, 471–479 (2000). https://doi.org/10.1099/0022-1317-81-2-471
doi: 10.1099/0022-1317-81-2-471 pubmed: 10644846
Weaver, S.C., Forrester, N.L.: Chikungunya: evolutionary history and recent epidemic spread. Antivir. Res. 120, 32–39 (2015). https://doi.org/10.1016/j.antiviral.2015.04.016
doi: 10.1016/j.antiviral.2015.04.016 pubmed: 25979669
Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C., de Lamballerie, X.: Chikungunya in the Americas. Lancet. 383, 514 (2014). https://doi.org/10.1016/S0140-6736(14)60185-9
doi: 10.1016/S0140-6736(14)60185-9 pubmed: 24506907
Nunes, M.R., et al.: Emergence and potential for spread of chikungunya virus in Brazil. BMC Med. 13, 102 (2015). https://doi.org/10.1186/s12916-015-0348-x
doi: 10.1186/s12916-015-0348-x pubmed: 25976325 pmcid: 4433093
Tsetsarkin, K., et al.: Infectious clones of chikungunya virus (La Reunion isolate) for vector competence studies. Vector Borne Zoonotic Dis. 6, 325–337 (2006). https://doi.org/10.1089/vbz.2006.6.325
doi: 10.1089/vbz.2006.6.325 pubmed: 17187566
Delatte, H., et al.: Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control. Parasite. 15, 3–13 (2008). https://doi.org/10.1051/parasite/2008151003
doi: 10.1051/parasite/2008151003 pubmed: 18416242
Vazeille, M., et al.: Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One. 2, e1168 (2007). https://doi.org/10.1371/journal.pone.0001168
doi: 10.1371/journal.pone.0001168 pubmed: 18000540 pmcid: 2064959
Bagny, L., Delatte, H., Quilici, S., Fontenille, D.: Progressive decrease in Aedes aegypti distribution in Reunion Island since the 1900s. J. Med. Entomol. 46, 1541–1545 (2009). https://doi.org/10.1603/033.046.0644
doi: 10.1603/033.046.0644 pubmed: 19960710
Naresh Kumar, C.V., Sivaprasad, Y., Sai Gopal, D.V.: Genetic diversity of 2006-2009 chikungunya virus outbreaks in Andhra Pradesh, India, reveals complete absence of E1:A226V mutation. Acta Virol. 60, 114–117 (2016)
doi: 10.4149/av_2016_01_114 pubmed: 26982477
Shrinet, J., et al.: Genetic characterization of chikungunya virus from New Delhi reveal emergence of a new molecular signature in Indian isolates. Virol. J. 9, 100 (2012). https://doi.org/10.1186/1743-422X-9-100
doi: 10.1186/1743-422X-9-100 pubmed: 22632412 pmcid: 3495852
Taraphdar, D., Chatterjee, S.: Molecular characterization of chikungunya virus circulating in urban and rural areas of West Bengal, India after its re-emergence in 2006. Trans. R. Soc. Trop. Med. Hyg. 109, 197–202 (2015). https://doi.org/10.1093/trstmh/tru166
doi: 10.1093/trstmh/tru166 pubmed: 25359322
Sudeep, A.B., Vyas, P.B., Parashar, D., Shil, P.: Differential susceptibility & replication potential of Vero E6, BHK-21, RD, A-549, C6/36 cells & Aedes aegypti mosquitoes to three strains of chikungunya virus. Indian J. Med. Res. 149, 771–777 (2019). https://doi.org/10.4103/ijmr.IJMR_453_17
doi: 10.4103/ijmr.IJMR_453_17 pubmed: 31496530 pmcid: 6755774
Amin, P., et al.: Chikungunya: report from the task force on tropical diseases by the world Federation of Societies of intensive and critical care medicine. J. Crit. Care. (2018). https://doi.org/10.1016/j.jcrc.2018.04.004
Akahata, W., et al.: A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat. Med. 16, 334–338 (2010). https://doi.org/10.1038/nm.2105
doi: 10.1038/nm.2105 pubmed: 20111039 pmcid: 2834826
Wu, J., Zhao, C., Liu, Q., Huang, W., Wang, Y.: Development and application of a bioluminescent imaging mouse model for chikungunya virus based on pseudovirus system. Vaccine. 35, 6387–6394 (2017). https://doi.org/10.1016/j.vaccine.2017.10.007
doi: 10.1016/j.vaccine.2017.10.007 pubmed: 29031692
Chung, W.C., Hwang, K.Y., Kang, S.J., Kim, J.O., Song, M.J.: Development of a neutralization assay based on the pseudotyped chikungunya virus of a Korean isolate. J. Microbiol. 58, 46–53 (2020). https://doi.org/10.1007/s12275-020-9384-0
doi: 10.1007/s12275-020-9384-0 pubmed: 31768937
Tong, W., Yin, X.X., Lee, B.J., Li, Y.G.: Preparation of vesicular stomatitis virus pseudotype with chikungunya virus envelope protein. Acta Virol. 59, 189–193 (2015). https://doi.org/10.4149/av_2015_02_189
doi: 10.4149/av_2015_02_189 pubmed: 26104337
Theillet, G., et al.: Comparative study of chikungunya virus-like particles and Pseudotyped-particles used for serological detection of specific immunoglobulin M. Virology. 529, 195–204 (2019). https://doi.org/10.1016/j.virol.2019.01.027
doi: 10.1016/j.virol.2019.01.027 pubmed: 30721816
Izumida, M., Hayashi, H., Tanaka, A., Kubo, Y.: Cathepsin B protease facilitates chikungunya virus envelope protein-mediated infection via endocytosis or macropinocytosis. Viruses. 12, 1 (2020). https://doi.org/10.3390/v12070722
doi: 10.3390/v12070722
Kummerer, B.M., Grywna, K., Glasker, S., Wieseler, J., Drosten, C.: Construction of an infectious chikungunya virus cDNA clone and stable insertion of mCherry reporter genes at two different sites. J. Gen. Virol. 93, 1991–1995 (2012). https://doi.org/10.1099/vir.0.043752-0
doi: 10.1099/vir.0.043752-0 pubmed: 22673932
Sun, C., Gardner, C.L., Watson, A.M., Ryman, K.D., Klimstra, W.B.: Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease. J. Virol. 88, 2035–2046 (2014). https://doi.org/10.1128/JVI.02990-13
doi: 10.1128/JVI.02990-13 pubmed: 24307590 pmcid: 3911548
Zhang, H.L., et al.: Visualization of chikungunya virus infection in vitro and in vivo. Emerg Microbes Infect. 8, 1574–1583 (2019). https://doi.org/10.1080/22221751.2019.1682948
doi: 10.1080/22221751.2019.1682948 pubmed: 31682177 pmcid: 6844386
Hu, D., et al.: Chikungunya virus glycoproteins pseudotype with lentiviral vectors and reveal a broad spectrum of cellular tropism. PLoS One. 9, e110893 (2014). https://doi.org/10.1371/journal.pone.0110893
doi: 10.1371/journal.pone.0110893 pubmed: 25333782 pmcid: 4205015
Tian, Y., et al.: Development of in vitro and in vivo neutralization assays based on the pseudotyped H7N9 virus. Sci. Rep. 8, 8484 (2018). https://doi.org/10.1038/s41598-018-26822-6
doi: 10.1038/s41598-018-26822-6 pubmed: 29855533 pmcid: 5981435
Kong, Y., Cirillo, J.D.: Fluorescence imaging of mycobacterial infection in live mice using fluorescent protein-expressing strains. Methods Mol. Biol. 1790, 75–85 (2018). https://doi.org/10.1007/978-1-4939-7860-1_6
doi: 10.1007/978-1-4939-7860-1_6 pubmed: 29858784
Dhadve, A., Thakur, B., Ray, P.: Construction of dual modality optical reporter gene constructs for bioluminescent and fluorescent imaging. Methods Mol. Biol. 1790, 13–27 (2018). https://doi.org/10.1007/978-1-4939-7860-1_2
doi: 10.1007/978-1-4939-7860-1_2 pubmed: 29858780
Fan, C., et al.: Beta-propiolactone inactivation of coxsackievirus A16 induces structural alteration and surface modification of viral capsids. J. Virol. 91, 1 (2017). https://doi.org/10.1128/JVI.00038-17
doi: 10.1128/JVI.00038-17
Bonnafous, P., et al.: Treatment of influenza virus with beta-propiolactone alters viral membrane fusion. Biochim. Biophys. Acta. 1838, 355–363 (2014). https://doi.org/10.1016/j.bbamem.2013.09.021
doi: 10.1016/j.bbamem.2013.09.021 pubmed: 24140008
Theillet, G., et al.: Detection of chikungunya virus-specific IgM on laser-cut paper-based device using pseudo-particles as capture antigen. J. Med. Virol. 91, 899–910 (2019). https://doi.org/10.1002/jmv.25420
doi: 10.1002/jmv.25420 pubmed: 30734316
Madrid, P.B., et al.: A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS One. 8, e60579 (2013). https://doi.org/10.1371/journal.pone.0060579
doi: 10.1371/journal.pone.0060579 pubmed: 23577127 pmcid: 3618516
Zhang, X., et al.: Characterization of the inhibitory effect of an extract of Prunella vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and infection. Antivir. Res. 127, 20–31 (2016). https://doi.org/10.1016/j.antiviral.2016.01.001
doi: 10.1016/j.antiviral.2016.01.001 pubmed: 26778707
von Rhein, C., et al.: Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro. Antivir. Res. 125, 51–57 (2016). https://doi.org/10.1016/j.antiviral.2015.11.007
doi: 10.1016/j.antiviral.2015.11.007
Sanders, D.A.: No false start for novel pseudotyped vectors. Curr. Opin. Biotechnol. 13, 437–442 (2002). https://doi.org/10.1016/s0958-1669(02)00374-9
doi: 10.1016/s0958-1669(02)00374-9 pubmed: 12459334
Steffen, I., Simmons, G.: Pseudotyping viral vectors with emerging virus envelope proteins. Curr. Gene Ther. 16, 47–55 (2016)
doi: 10.2174/1566523216666160119093948 pubmed: 26785737
Bernard, E., et al.: Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One. 5, e11479 (2010). https://doi.org/10.1371/journal.pone.0011479
doi: 10.1371/journal.pone.0011479 pubmed: 20628602 pmcid: 2900206
Li, Q., Liu, Q., Huang, W., Li, X., Wang, Y.: Current status on the development of pseudoviruses for enveloped viruses. Rev. Med. Virol. 28, 1 (2018). https://doi.org/10.1002/rmv.1963
doi: 10.1002/rmv.1963

Auteurs

Jiajing Wu (J)

Beijing Yunling Biotechnology Co., Ltd, Beijing, China.

Weijin Huang (W)

Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China.

Youchun Wang (Y)

Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. wangyc@nifdc.org.cn.
Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China. wangyc@nifdc.org.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH