Pseudotyped Viruses for the Alphavirus Chikungunya Virus.
Chikungunya virus
Neutralization
Pseudotyped virus
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2023
2023
Historique:
entrez:
15
3
2023
pubmed:
16
3
2023
medline:
21
3
2023
Statut:
ppublish
Résumé
Members of the genus Alphavirus are mostly mosquito-borne pathogens that cause disease in their vertebrate hosts. Chikungunya virus (CHIKV), which is one member of the genus Alphavirus [1], has been a major health problem in endemic areas since its re-emergence in 2006. CHIKV is transmitted to mammalian hosts by the Aedes mosquito, causing persistent debilitating symptoms in many cases. At present, there is no specific treatment or vaccine. Experiments involving live CHIKV need to be performed in BSL-3 facilities, which limits vaccine and drug research. The emergence of pseudotyped virus technology offered the potential for the development of a safe and effective evaluation method. In this chapter, we review the construction and application of pseudotyped CHIKVs, the findings from which have enhanced our understanding of CHIKV. This will, in turn, enable the exploration of promising therapeutic strategies in animal models, with the ultimate aim of developing effective treatments and vaccines against CHIKV and other related viruses.
Identifiants
pubmed: 36920704
doi: 10.1007/978-981-99-0113-5_16
doi:
Substances chimiques
Viral Vaccines
0
Types de publication
Review
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
299-312Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Références
Chen, R., et al.: ICTV Virus Taxonomy Profile: Togaviridae. J. Gen. Virol. 99, 761–762 (2018). https://doi.org/10.1099/jgv.0.001072
doi: 10.1099/jgv.0.001072
pubmed: 29745869
Josseran, L., et al.: Chikungunya disease outbreak, Reunion Island. Emerg. Infect. Dis. 12, 1994–1995 (2006). https://doi.org/10.3201/eid1212.060710
doi: 10.3201/eid1212.060710
pubmed: 17354339
pmcid: 3291364
Kalantri, S.P., Joshi, R., Riley, L.W.: Chikungunya epidemic: an Indian perspective. Natl. Med. J. India. 19, 315–322 (2006)
pubmed: 17343016
Guerrero-Arguero, I., et al.: Alphaviruses: host pathogenesis, immune response, and vaccine & treatment updates. J. Gen. Virol. 102, 1 (2021). https://doi.org/10.1099/jgv.0.001644
doi: 10.1099/jgv.0.001644
Miner, J.J., et al.: Chikungunya viral arthritis in the United States: a mimic of seronegative rheumatoid arthritis. Arthritis Rheumatol. 67, 1214–1220 (2015). https://doi.org/10.1002/art.39027
doi: 10.1002/art.39027
pubmed: 25605621
pmcid: 4591551
Schilte, C., et al.: Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl. Trop. Dis. 7, e2137 (2013). https://doi.org/10.1371/journal.pntd.0002137
doi: 10.1371/journal.pntd.0002137
pubmed: 23556021
pmcid: 3605278
Burt, F.J., Rolph, M.S., Rulli, N.E., Mahalingam, S., Heise, M.T.: Chikungunya: a re-emerging virus. Lancet. 379, 662–671 (2012). https://doi.org/10.1016/S0140-6736(11)60281-X
doi: 10.1016/S0140-6736(11)60281-X
pubmed: 22100854
Narwal, M., et al.: Crystal structure of chikungunya virus nsP2 cysteine protease reveals a putative flexible loop blocking its active site. Int. J. Biol. Macromol. 116, 451–462 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.007
doi: 10.1016/j.ijbiomac.2018.05.007
pubmed: 29730006
Khan, A.H., et al.: Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol. 83, 3075–3084 (2002). https://doi.org/10.1099/0022-1317-83-12-3075
doi: 10.1099/0022-1317-83-12-3075
pubmed: 12466484
Hong, E.M., Perera, R., Kuhn, R.J.: Alphavirus capsid protein helix I controls a checkpoint in nucleocapsid core assembly. J. Virol. 80, 8848–8855 (2006). https://doi.org/10.1128/JVI.00619-06
doi: 10.1128/JVI.00619-06
pubmed: 16940497
pmcid: 1563918
Perera, R., Owen, K.E., Tellinghuisen, T.L., Gorbalenya, A.E., Kuhn, R.J.: Alphavirus nucleocapsid protein contains a putative coiled coil alpha-helix important for core assembly. J. Virol. 75, 1–10 (2001). https://doi.org/10.1128/JVI.75.1.1-10.2001
doi: 10.1128/JVI.75.1.1-10.2001
pubmed: 11119567
pmcid: 113891
Schwartz, O., Albert, M.L.: Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol. 8, 491–500 (2010). https://doi.org/10.1038/nrmicro2368
doi: 10.1038/nrmicro2368
pubmed: 20551973
Ashbrook, A.W., et al.: Residue 82 of the chikungunya virus E2 attachment protein modulates viral dissemination and arthritis in mice. J. Virol. 88, 12180–12192 (2014). https://doi.org/10.1128/JVI.01672-14
doi: 10.1128/JVI.01672-14
pubmed: 25142598
pmcid: 4248890
Smith, T.J., et al.: Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy. Proc. Natl. Acad. Sci. U. S. A. 92, 10648–10652 (1995)
doi: 10.1073/pnas.92.23.10648
pubmed: 7479858
pmcid: 40669
Li, L., Jose, J., Xiang, Y., Kuhn, R.J., Rossmann, M.G.: Structural changes of envelope proteins during alphavirus fusion. Nature. 468, 705–708 (2010). https://doi.org/10.1038/nature09546
doi: 10.1038/nature09546
pubmed: 21124457
pmcid: 3057476
Kuo, S.C., et al.: Cell-based analysis of chikungunya virus E1 protein in membrane fusion. J. Biomed. Sci. 19, 44 (2012). https://doi.org/10.1186/1423-0127-19-44
doi: 10.1186/1423-0127-19-44
pubmed: 22520648
pmcid: 3384457
Snyder, J.E., et al.: Functional characterization of the alphavirus TF protein. J. Virol. 87, 8511–8523 (2013). https://doi.org/10.1128/JVI.00449-13
doi: 10.1128/JVI.00449-13
pubmed: 23720714
pmcid: 3719798
Basore, K., et al.: Cryo-EM structure of chikungunya virus in complex with the Mxra8 receptor. Cell. 177, 1725–1737 e1716 (2019). https://doi.org/10.1016/j.cell.2019.04.006
doi: 10.1016/j.cell.2019.04.006
pubmed: 31080061
pmcid: 7227486
Verma, J., Subbarao, N.: In silico identification of small molecule protein-protein interaction inhibitors: targeting hotspot regions at the interface of MXRA8 and CHIKV envelope protein. J. Biomol. Struct. Dyn. 1, 19 (2022). https://doi.org/10.1080/07391102.2022.2048080
doi: 10.1080/07391102.2022.2048080
Yin, P., Kielian, M.: BHK-21 cell clones differ in chikungunya virus infection and MXRA8 receptor expression. Viruses. 13 (2021). https://doi.org/10.3390/v13060949
Schuffenecker, I., et al.: Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 3, e263 (2006). https://doi.org/10.1371/journal.pmed.0030263
doi: 10.1371/journal.pmed.0030263
pubmed: 16700631
pmcid: 1463904
Arankalle, V.A., et al.: Genetic divergence of chikungunya viruses in India (1963-2006) with special reference to the 2005-2006 explosive epidemic. J. Gen. Virol. 88, 1967–1976 (2007). https://doi.org/10.1099/vir.0.82714-0
doi: 10.1099/vir.0.82714-0
pubmed: 17554030
Pialoux, G., Gauzere, B.A., Jaureguiberry, S., Strobel, M.: Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7, 319–327 (2007). https://doi.org/10.1016/S1473-3099(07)70107-X
doi: 10.1016/S1473-3099(07)70107-X
pubmed: 17448935
Lanciotti, R.S., Valadere, A.M.: Transcontinental movement of Asian genotype chikungunya virus. Emerg. Infect. Dis. 20, 1400–1402 (2014). https://doi.org/10.3201/eid2008.140268
doi: 10.3201/eid2008.140268
pubmed: 25076384
pmcid: 4111183
Sy, A.K., et al.: Molecular characterization of chikungunya virus, Philippines, 2011-2013. Emerg. Infect. Dis. 22, 887–890 (2016). https://doi.org/10.3201/eid2205.151268
doi: 10.3201/eid2205.151268
pubmed: 27088593
pmcid: 4861512
Powers, A.M., Brault, A.C., Tesh, R.B., Weaver, S.C.: Re-emergence of chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol. 81, 471–479 (2000). https://doi.org/10.1099/0022-1317-81-2-471
doi: 10.1099/0022-1317-81-2-471
pubmed: 10644846
Weaver, S.C., Forrester, N.L.: Chikungunya: evolutionary history and recent epidemic spread. Antivir. Res. 120, 32–39 (2015). https://doi.org/10.1016/j.antiviral.2015.04.016
doi: 10.1016/j.antiviral.2015.04.016
pubmed: 25979669
Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C., de Lamballerie, X.: Chikungunya in the Americas. Lancet. 383, 514 (2014). https://doi.org/10.1016/S0140-6736(14)60185-9
doi: 10.1016/S0140-6736(14)60185-9
pubmed: 24506907
Nunes, M.R., et al.: Emergence and potential for spread of chikungunya virus in Brazil. BMC Med. 13, 102 (2015). https://doi.org/10.1186/s12916-015-0348-x
doi: 10.1186/s12916-015-0348-x
pubmed: 25976325
pmcid: 4433093
Tsetsarkin, K., et al.: Infectious clones of chikungunya virus (La Reunion isolate) for vector competence studies. Vector Borne Zoonotic Dis. 6, 325–337 (2006). https://doi.org/10.1089/vbz.2006.6.325
doi: 10.1089/vbz.2006.6.325
pubmed: 17187566
Delatte, H., et al.: Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control. Parasite. 15, 3–13 (2008). https://doi.org/10.1051/parasite/2008151003
doi: 10.1051/parasite/2008151003
pubmed: 18416242
Vazeille, M., et al.: Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One. 2, e1168 (2007). https://doi.org/10.1371/journal.pone.0001168
doi: 10.1371/journal.pone.0001168
pubmed: 18000540
pmcid: 2064959
Bagny, L., Delatte, H., Quilici, S., Fontenille, D.: Progressive decrease in Aedes aegypti distribution in Reunion Island since the 1900s. J. Med. Entomol. 46, 1541–1545 (2009). https://doi.org/10.1603/033.046.0644
doi: 10.1603/033.046.0644
pubmed: 19960710
Naresh Kumar, C.V., Sivaprasad, Y., Sai Gopal, D.V.: Genetic diversity of 2006-2009 chikungunya virus outbreaks in Andhra Pradesh, India, reveals complete absence of E1:A226V mutation. Acta Virol. 60, 114–117 (2016)
doi: 10.4149/av_2016_01_114
pubmed: 26982477
Shrinet, J., et al.: Genetic characterization of chikungunya virus from New Delhi reveal emergence of a new molecular signature in Indian isolates. Virol. J. 9, 100 (2012). https://doi.org/10.1186/1743-422X-9-100
doi: 10.1186/1743-422X-9-100
pubmed: 22632412
pmcid: 3495852
Taraphdar, D., Chatterjee, S.: Molecular characterization of chikungunya virus circulating in urban and rural areas of West Bengal, India after its re-emergence in 2006. Trans. R. Soc. Trop. Med. Hyg. 109, 197–202 (2015). https://doi.org/10.1093/trstmh/tru166
doi: 10.1093/trstmh/tru166
pubmed: 25359322
Sudeep, A.B., Vyas, P.B., Parashar, D., Shil, P.: Differential susceptibility & replication potential of Vero E6, BHK-21, RD, A-549, C6/36 cells & Aedes aegypti mosquitoes to three strains of chikungunya virus. Indian J. Med. Res. 149, 771–777 (2019). https://doi.org/10.4103/ijmr.IJMR_453_17
doi: 10.4103/ijmr.IJMR_453_17
pubmed: 31496530
pmcid: 6755774
Amin, P., et al.: Chikungunya: report from the task force on tropical diseases by the world Federation of Societies of intensive and critical care medicine. J. Crit. Care. (2018). https://doi.org/10.1016/j.jcrc.2018.04.004
Akahata, W., et al.: A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat. Med. 16, 334–338 (2010). https://doi.org/10.1038/nm.2105
doi: 10.1038/nm.2105
pubmed: 20111039
pmcid: 2834826
Wu, J., Zhao, C., Liu, Q., Huang, W., Wang, Y.: Development and application of a bioluminescent imaging mouse model for chikungunya virus based on pseudovirus system. Vaccine. 35, 6387–6394 (2017). https://doi.org/10.1016/j.vaccine.2017.10.007
doi: 10.1016/j.vaccine.2017.10.007
pubmed: 29031692
Chung, W.C., Hwang, K.Y., Kang, S.J., Kim, J.O., Song, M.J.: Development of a neutralization assay based on the pseudotyped chikungunya virus of a Korean isolate. J. Microbiol. 58, 46–53 (2020). https://doi.org/10.1007/s12275-020-9384-0
doi: 10.1007/s12275-020-9384-0
pubmed: 31768937
Tong, W., Yin, X.X., Lee, B.J., Li, Y.G.: Preparation of vesicular stomatitis virus pseudotype with chikungunya virus envelope protein. Acta Virol. 59, 189–193 (2015). https://doi.org/10.4149/av_2015_02_189
doi: 10.4149/av_2015_02_189
pubmed: 26104337
Theillet, G., et al.: Comparative study of chikungunya virus-like particles and Pseudotyped-particles used for serological detection of specific immunoglobulin M. Virology. 529, 195–204 (2019). https://doi.org/10.1016/j.virol.2019.01.027
doi: 10.1016/j.virol.2019.01.027
pubmed: 30721816
Izumida, M., Hayashi, H., Tanaka, A., Kubo, Y.: Cathepsin B protease facilitates chikungunya virus envelope protein-mediated infection via endocytosis or macropinocytosis. Viruses. 12, 1 (2020). https://doi.org/10.3390/v12070722
doi: 10.3390/v12070722
Kummerer, B.M., Grywna, K., Glasker, S., Wieseler, J., Drosten, C.: Construction of an infectious chikungunya virus cDNA clone and stable insertion of mCherry reporter genes at two different sites. J. Gen. Virol. 93, 1991–1995 (2012). https://doi.org/10.1099/vir.0.043752-0
doi: 10.1099/vir.0.043752-0
pubmed: 22673932
Sun, C., Gardner, C.L., Watson, A.M., Ryman, K.D., Klimstra, W.B.: Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease. J. Virol. 88, 2035–2046 (2014). https://doi.org/10.1128/JVI.02990-13
doi: 10.1128/JVI.02990-13
pubmed: 24307590
pmcid: 3911548
Zhang, H.L., et al.: Visualization of chikungunya virus infection in vitro and in vivo. Emerg Microbes Infect. 8, 1574–1583 (2019). https://doi.org/10.1080/22221751.2019.1682948
doi: 10.1080/22221751.2019.1682948
pubmed: 31682177
pmcid: 6844386
Hu, D., et al.: Chikungunya virus glycoproteins pseudotype with lentiviral vectors and reveal a broad spectrum of cellular tropism. PLoS One. 9, e110893 (2014). https://doi.org/10.1371/journal.pone.0110893
doi: 10.1371/journal.pone.0110893
pubmed: 25333782
pmcid: 4205015
Tian, Y., et al.: Development of in vitro and in vivo neutralization assays based on the pseudotyped H7N9 virus. Sci. Rep. 8, 8484 (2018). https://doi.org/10.1038/s41598-018-26822-6
doi: 10.1038/s41598-018-26822-6
pubmed: 29855533
pmcid: 5981435
Kong, Y., Cirillo, J.D.: Fluorescence imaging of mycobacterial infection in live mice using fluorescent protein-expressing strains. Methods Mol. Biol. 1790, 75–85 (2018). https://doi.org/10.1007/978-1-4939-7860-1_6
doi: 10.1007/978-1-4939-7860-1_6
pubmed: 29858784
Dhadve, A., Thakur, B., Ray, P.: Construction of dual modality optical reporter gene constructs for bioluminescent and fluorescent imaging. Methods Mol. Biol. 1790, 13–27 (2018). https://doi.org/10.1007/978-1-4939-7860-1_2
doi: 10.1007/978-1-4939-7860-1_2
pubmed: 29858780
Fan, C., et al.: Beta-propiolactone inactivation of coxsackievirus A16 induces structural alteration and surface modification of viral capsids. J. Virol. 91, 1 (2017). https://doi.org/10.1128/JVI.00038-17
doi: 10.1128/JVI.00038-17
Bonnafous, P., et al.: Treatment of influenza virus with beta-propiolactone alters viral membrane fusion. Biochim. Biophys. Acta. 1838, 355–363 (2014). https://doi.org/10.1016/j.bbamem.2013.09.021
doi: 10.1016/j.bbamem.2013.09.021
pubmed: 24140008
Theillet, G., et al.: Detection of chikungunya virus-specific IgM on laser-cut paper-based device using pseudo-particles as capture antigen. J. Med. Virol. 91, 899–910 (2019). https://doi.org/10.1002/jmv.25420
doi: 10.1002/jmv.25420
pubmed: 30734316
Madrid, P.B., et al.: A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS One. 8, e60579 (2013). https://doi.org/10.1371/journal.pone.0060579
doi: 10.1371/journal.pone.0060579
pubmed: 23577127
pmcid: 3618516
Zhang, X., et al.: Characterization of the inhibitory effect of an extract of Prunella vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and infection. Antivir. Res. 127, 20–31 (2016). https://doi.org/10.1016/j.antiviral.2016.01.001
doi: 10.1016/j.antiviral.2016.01.001
pubmed: 26778707
von Rhein, C., et al.: Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro. Antivir. Res. 125, 51–57 (2016). https://doi.org/10.1016/j.antiviral.2015.11.007
doi: 10.1016/j.antiviral.2015.11.007
Sanders, D.A.: No false start for novel pseudotyped vectors. Curr. Opin. Biotechnol. 13, 437–442 (2002). https://doi.org/10.1016/s0958-1669(02)00374-9
doi: 10.1016/s0958-1669(02)00374-9
pubmed: 12459334
Steffen, I., Simmons, G.: Pseudotyping viral vectors with emerging virus envelope proteins. Curr. Gene Ther. 16, 47–55 (2016)
doi: 10.2174/1566523216666160119093948
pubmed: 26785737
Bernard, E., et al.: Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One. 5, e11479 (2010). https://doi.org/10.1371/journal.pone.0011479
doi: 10.1371/journal.pone.0011479
pubmed: 20628602
pmcid: 2900206
Li, Q., Liu, Q., Huang, W., Li, X., Wang, Y.: Current status on the development of pseudoviruses for enveloped viruses. Rev. Med. Virol. 28, 1 (2018). https://doi.org/10.1002/rmv.1963
doi: 10.1002/rmv.1963