Nutritional deficiencies that may predispose to long COVID.
Glutathione peroxidase isozyme 4
Lymphocyte proliferation assay
Multiple nutritional deficiencies
Myeloperoxidase
NADPH oxidase 2
Journal
Inflammopharmacology
ISSN: 1568-5608
Titre abrégé: Inflammopharmacology
Pays: Switzerland
ID NLM: 9112626
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
15
02
2023
accepted:
28
02
2023
medline:
1
5
2023
pubmed:
16
3
2023
entrez:
15
3
2023
Statut:
ppublish
Résumé
Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clinical studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae, known as Long COVID.
Identifiants
pubmed: 36920723
doi: 10.1007/s10787-023-01183-3
pii: 10.1007/s10787-023-01183-3
pmc: PMC10015545
doi:
Substances chimiques
Zinc
J41CSQ7QDS
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
573-583Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Abdelmaksoud AA, Ghweil AA, Hassan MH, Rashad A, Khodeary A, Aref ZF, Sayed MAA, Elsamman MK, Bazeed SES (2021) Olfactory disturbances as presenting manifestation among Egyptian patients with COVID-19: possible role of zinc. Biol Trace Elem Res 199(11):4101–4108. https://doi.org/10.1007/s12011-020-02546-5
doi: 10.1007/s12011-020-02546-5
pubmed: 33409924
pmcid: 7787876
Akasov RA, Khaydukov EV, Andreyuk DS, Sholina NV, Sheremeta AN, Romanov DV, Kostyuk GP, Panchenko VY, Kovalchuk MV (2022) Riboflavin for COVID-19 adjuvant treatment in patients with mental health disorders: observational study. Front Pharmacol 13:755745. https://doi.org/10.3389/fphar.2022.755745
doi: 10.3389/fphar.2022.755745
pubmed: 35359854
pmcid: 8960625
Al Sulaiman K, Aljuhani O, Al Dossari M, Alshahrani A, Alharbi A, Algarni R, Al Jeraisy M, Al Harbi S, Al Katheri A, Al Eidan F, Al Bekairy AM, Al Qahtani N, Al Muqrin M, Vishwakarma R, Al Ghamdi G (2021) Evaluation of thiamine as adjunctive therapy in COVID-19 critically ill patients: a two-center propensity score matched study. Crit Care 25(1):223. https://doi.org/10.1186/s13054-021-03648-9
doi: 10.1186/s13054-021-03648-9
pubmed: 34193235
pmcid: 8242279
Alexander TH, Davidson TM (2006) Intranasal zinc and anosmia: the zinc-induced anosmia syndrome. Laryngoscope 116(2):217–220. https://doi.org/10.1097/01.mlg.0000191549.17796.13
doi: 10.1097/01.mlg.0000191549.17796.13
pubmed: 16467707
Alexander R, Debiec N, Razzaque MS, He P (2022) Inorganic phosphate-induced cytotoxicity. IUBMB Life 74(1):117–124. https://doi.org/10.1002/iub.2561
doi: 10.1002/iub.2561
pubmed: 34676972
Alfano G, Ferrari A, Fontana F, Perrone R, Mori G, Ascione E, Magistroni R, Venturi G, Pederzoli S, Margiotta G, Romeo M, Piccinini F, Franceschi G, Volpi S, Faltoni M, Ciusa G, Bacca E, Tutone M, Raimondi A, Menozzi M, Franceschini E, Cuomo G, Orlando G, Santoro A, Di Gaetano M, Puzzolante C, Carli F, Bedini A, Milic J, Meschiari M, Mussini C, Cappelli G, Guaraldi G (2021) Hypokalemia in patients with COVID-19. Clin Exp Nephrol 25(4):401–409. https://doi.org/10.1007/s10157-020-01996-4
doi: 10.1007/s10157-020-01996-4
pubmed: 33398605
pmcid: 7781399
Alker W, Schwerdtle T, Schomburg L, Haase H (2019) A Zinpyr-1-based fluorimetric microassay for free zinc in human serum. Int J Mol Sci 20(16):4006. https://doi.org/10.3390/ijms20164006
doi: 10.3390/ijms20164006
pubmed: 31426452
pmcid: 6720863
Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S (2020) COVID-19: The potential role of copper and N-acetylcysteine (NAC) in a combination of candidate antiviral treatments against SARS-CoV-2. In Vivo 34(3 Suppl):1567–1588. https://doi.org/10.21873/invivo.11946
doi: 10.21873/invivo.11946
pubmed: 32503814
pmcid: 8378025
Aratani Y (2018) Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys 640:47–52. https://doi.org/10.1016/j.abb.2018.01.004
doi: 10.1016/j.abb.2018.01.004
pubmed: 29336940
Ardestani A, Azizi Z (2021) Targeting glucose metabolism for treatment of COVID-19. Signal Transduct Target Ther 6(1):112. https://doi.org/10.1038/s41392-021-00532-4
doi: 10.1038/s41392-021-00532-4
pubmed: 33677470
pmcid: 7936230
Assimakopoulos SF, Aretha D, Komninos D, Dimitropoulou D, Lagadinou M, Leonidou L, Oikonomou I, Mouzaki A, Marangos M (2021) N-acetyl-cysteine reduces the risk for mechanical ventilation and mortality in patients with COVID-19 pneumonia: a two-center retrospective cohort study. Infect Dis (lond) 53(11):847–854. https://doi.org/10.1080/23744235.2021.1945675
doi: 10.1080/23744235.2021.1945675
pubmed: 34182881
Barceloux DG (1999) Selenium. J Toxicol Clin Toxicol 37(2):145–172. https://doi.org/10.1081/clt-100102417
doi: 10.1081/clt-100102417
pubmed: 10382553
Belikov AV, Schraven B, Simeoni L (2015) T cells and reactive oxygen species. J Biomed Sci 22:85. https://doi.org/10.1186/s12929-015-0194-3
doi: 10.1186/s12929-015-0194-3
pubmed: 26471060
pmcid: 4608155
Biancatelli RMLC, Berrill M, Catravas JD, Marik PE (2020) Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 11:1451. https://doi.org/10.3389/fimmu.2020.01451
doi: 10.3389/fimmu.2020.01451
Bird et al (2017) Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients 9:655. https://doi.org/10.3390/nu9070655
doi: 10.3390/nu9070655
pubmed: 28672791
pmcid: 5537775
Bizzarri M, Laganà AS, Aragona D, Unfer V (2020) Inositol and pulmonary function. Could myo-inositol treatment downregulate inflammation and cytokine release syndrome in SARS-CoV-2? Eur Rev Med Pharmacol Sci 24(6):3426–3432. https://doi.org/10.26355/eurrev_202003_20715
doi: 10.26355/eurrev_202003_20715
pubmed: 32271462
Branco de Oliveira MV, Irikura S, Lourenço FHB, Shinsato M, Irikura TCDB, Irikura RB, Albuquerque TVC, Shinsato VN, Orsatti VN, Fontanelli AM, Samegima DAG, Gonçalves MVM, Bernabé DG (2021) Encephalopathy responsive to thiamine in severe COVID-19 patients. Brain Behav Immun Health 14:100252. https://doi.org/10.1016/j.bbih.2021.100252
doi: 10.1016/j.bbih.2021.100252
pubmed: 33817670
pmcid: 8011322
Bucci LR (1994) A functional analytical technique for monitoring nutrient status and repletion. Part 3: clinical experience. Am Clin Lab 13:10–11
pubmed: 10147160
Camp OG, Bai D, Gonullu DC, Nayak N, Abu-Soud HM (2021) Melatonin interferes with COVID-19 at several distinct ROS-related steps. J Inorg Biochem 223:111546. https://doi.org/10.1016/j.jinorgbio.2021.111546
doi: 10.1016/j.jinorgbio.2021.111546
pubmed: 34304092
pmcid: 8285369
Carr AC, Winterbourn CC (1997) Oxidation of neutrophil glutathione and protein thiols by myeloperoxidase-derived hypochlorous acid. Biochem J 327(Pt 1):275–281. https://doi.org/10.1042/bj3270275
doi: 10.1042/bj3270275
pubmed: 9355763
pmcid: 1218791
Carr AC, Hawkins CL, Thomas SR, Stocker R, Frei B (2001) Relative reactivities of N-chloramines and hypochlorous acid with human plasma constituents. Free Radic Biol Med 30(5):526–536. https://doi.org/10.1016/s0891-5849(00)00495-0
doi: 10.1016/s0891-5849(00)00495-0
pubmed: 11182523
Cengiz M, Uysal BB, Ikitimur H, Ozcan E, Islamoğlu MS, Aktepe E, Yavuzer H, Yavuzer S (2020) Effect of oral L-glutamine supplementation on Covid-19 treatment. Clin Nutr Exp 33:24–31. https://doi.org/10.1016/j.yclnex.2020.07.003
doi: 10.1016/j.yclnex.2020.07.003
pubmed: 32835086
pmcid: 7387270
Chen J (2012) An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr 21(3):320–326
pubmed: 22705420
Chillon TS, Maares M, Demircan K, Hackler J, Sun Q, Heller RA, Diegmann J, Bachmann M, Moghaddam A, Haase H, Schomburg L (2022) Serum free zinc is associated with vaccination response to SARS-CoV-2. Front Immunol 13:906551. https://doi.org/10.3389/fimmu.2022.906551
doi: 10.3389/fimmu.2022.906551
pubmed: 35844578
pmcid: 9280661
Clemente-Suárez VJ, Ramos-Campo DJ, Mielgo-Ayuso J, Dalamitros AA, Nikolaidis PA, Hormeño-Holgado A, Tornero-Aguilera JF (2021) Nutrition in the actual COVID-19 pandemic. Narrat Rev Nutr 13(6):1924. https://doi.org/10.3390/nu13061924
doi: 10.3390/nu13061924
Cory JG, Cory AH (2006) Critical roles of glutamine as nitrogen donors in purine and pyrimidine nucleotide synthesis: asparaginase treatment in childhood acute lymphoblastic leukemia. In Vivo 20(5):587–589
pubmed: 17091764
Dabbagh-Bazarbachi H, Clergeaud G, Quesada IM, Ortiz M, O’Sullivan CK, Fernández-Larrea JB (2014) Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1–6 cells to a liposome model. J Agric Food Chem 62(32):8085–8093. https://doi.org/10.1021/jf5014633
doi: 10.1021/jf5014633
pubmed: 25050823
Dalbeni A, Bevilacqua M, Teani I, Normelli I, Mazzaferri F, Chiarioni G (2021) Excessive vitamin B12 and poor outcome in COVID-19 pneumonia. Nutr Metab Cardiovasc Dis 31(3):774–775. https://doi.org/10.1016/j.numecd.2020.12.005
doi: 10.1016/j.numecd.2020.12.005
pubmed: 33549452
Das UN (2020) Can bioactive lipids inactivate coronavirus (COVID-19)? Arch Med Res 51(3):282–286. https://doi.org/10.1016/j.arcmed.2020.03.004
doi: 10.1016/j.arcmed.2020.03.004
pubmed: 32229155
pmcid: 7270578
de Alencar JCG, Moreira CL, Müller AD, Chaves CE, Fukuhara MA, da Silva EA, Miyamoto MFS, Pinto VB, Bueno CG, Neto FL, Gomez LM, Menezes MCS, Marchini JFM, Marino LO, Brandão Neto RA, Souza HP (2021) Double-blind, randomized, placebo-controlled trial with N-acetylcysteine for treatment of severe acute respiratory syndrome caused by Coronavirus disease 2019 (COVID-19). Clin Infect Dis 72(11):e736–e741. https://doi.org/10.1093/cid/ciaa1443
doi: 10.1093/cid/ciaa1443
pubmed: 32964918
De Flora S, Balansky R, La Maestra S (2020) Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J 34(10):13185–13193. https://doi.org/10.1096/fj.202001807
doi: 10.1096/fj.202001807
pubmed: 32780893
Derosa G, Maffioli P, D’Angelo A, Di Pierro F (2021) A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res 35(3):1230–1236. https://doi.org/10.1002/ptr.6887
doi: 10.1002/ptr.6887
pubmed: 33034398
Dharmalingam K, Birdi A, Tomo S, Sreenivasulu K, Charan J, Yadav D, Purohit P, Sharma P (2021) Trace elements as immunoregulators in SARS-CoV-2 and other viral infections. Indian J Clin Biochem 36(4):416–426. https://doi.org/10.1007/s12291-021-00961-6
doi: 10.1007/s12291-021-00961-6
pubmed: 33613002
pmcid: 7879594
Di Mascio P, Devasagayam TP, Kaiser S, Sies H (1990) Carotenoids, tocopherols and thiols as biological singlet molecular oxygen quenchers. Biochem Soc Trans 18(6):1054–1056. https://doi.org/10.1042/bst0181054
doi: 10.1042/bst0181054
pubmed: 2088803
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J (2019) Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem Rev 119(3):2043–2086. https://doi.org/10.1021/acs.chemrev.8b00554
doi: 10.1021/acs.chemrev.8b00554
pubmed: 30721030
Doaei S, Gholami S, Rastgoo S, Gholamalizadeh M, Bourbour F, Bagheri SE, Samipoor F, Akbari ME, Shadnoush M, Ghorat F, Mosavi Jarrahi SA, Ashouri Mirsadeghi N, Hajipour A, Joola P, Moslem A, Goodarzi MO (2021) The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: a randomized clinical trial. J Transl Med 19(1):128. https://doi.org/10.1186/s12967-021-02795-5
doi: 10.1186/s12967-021-02795-5
pubmed: 33781275
pmcid: 8006115
Drakesmith H, Pasricha SR, Cabantchik I, Hershko C, Weiss G, Girelli D, Stoffel N, Muckenthaler MU, Nemeth E, Camaschella C, Klenerman P, Zimmermann MB (2021) Vaccine efficacy and iron deficiency: an intertwined pair? Lancet Haematol 8(9):e666–e669. https://doi.org/10.1016/S2352-3026(21)00201-5
doi: 10.1016/S2352-3026(21)00201-5
pubmed: 34450104
pmcid: 8384343
Du Y, Luo K, Ni R, Hussain R (2018) Selenium and hazardous elements distribution in plant-soil-water system and human health risk assessment of lower Cambrian, Southern Shaanxi, China. Environ Geochem Health 40(5):2049–2069. https://doi.org/10.1007/s10653-018-0082-3
doi: 10.1007/s10653-018-0082-3
pubmed: 29497886
Du Laing G, Petrovic M, Lachat C, De Boevre M, Klingenberg GJ, Sun Q, De Saeger S, De Clercq J, Ide L, Vandekerckhove L, Schomburg L (2021) Course and survival of COVID-19 patients with comorbidities in relation to the trace element status at hospital admission. Nutrients 13(10):3304. https://doi.org/10.3390/nu13103304
doi: 10.3390/nu13103304
pubmed: 34684306
pmcid: 8541297
Elham A (2021) Vitamin B12 deficiency in COVID-19 recovered patients: case report. Int J Pharma Res 13(1):482–485
El-Kurdi B, Khatua B, Rood C, Snozek C, Cartin-Ceba R, Singh VP (2020) Mortality from coronavirus disease 2019 increases with unsaturated fat and may be reduced by early calcium and albumin supplementation. Gastroenterology 159(3):1015-1018.e4. https://doi.org/10.1053/j.gastro.2020.05.057
doi: 10.1053/j.gastro.2020.05.057
pubmed: 32470338
Engström W, Zetterberg A (1983) Phosphate and the regulation of DNA replication in normal and virus-transformed 3T3 cells. Biochem J 214(3):695–702. https://doi.org/10.1042/bj2140695
doi: 10.1042/bj2140695
pubmed: 6312961
pmcid: 1152305
Eskander M, Razzaque MS (2022) Can maintaining optimal magnesium balance reduce the disease severity of COVID-19 patients? Front Endocrinol (lausanne) 13:843152. https://doi.org/10.3389/fendo.2022.843152
doi: 10.3389/fendo.2022.843152
pubmed: 35422757
Españo E, Kim J, Lee K, Kim JK (2021) Phytochemicals for the treatment of COVID-19. J Microbiol 59(11):959–977. https://doi.org/10.1007/s12275-021-1467-z
doi: 10.1007/s12275-021-1467-z
pubmed: 34724178
pmcid: 8559138
Espinola MSB, Bertelli M, Bizzarri M, Unfer V, Laganà AS, Visconti B, Aragona C (2021) Inositol and vitamin D may naturally protect human reproduction and women undergoing assisted reproduction from covid-19 risk. J Reprod Immunol 144:103271. https://doi.org/10.1016/j.jri.2021.103271
doi: 10.1016/j.jri.2021.103271
Evanics F, Maurmann L, Yang WW, Bose RN (2003) Nuclear magnetic resonance structures of the zinc finger domain of human DNA polymerase-alpha. Biochim Biophys Acta 1651(1–2):163–171. https://doi.org/10.1016/s1570-9639(03)00266-8
doi: 10.1016/s1570-9639(03)00266-8
pubmed: 14499601
Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14(7):1337–1383. https://doi.org/10.1089/ars.2010.3275
doi: 10.1089/ars.2010.3275
pubmed: 20812787
Fakhrolmobasheri M, Mazaheri-Tehrani S, Kieliszek M, Zeinalian M, Abbasi M, Karimi F, Mozafari AM (2022) COVID-19 and selenium deficiency: a systematic review. Biol Trace Elem Res 200(9):3945–3956. https://doi.org/10.1007/s12011-021-02997-4
doi: 10.1007/s12011-021-02997-4
pubmed: 34739678
Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227. https://doi.org/10.1093/ajcn/51.2.225
doi: 10.1093/ajcn/51.2.225
pubmed: 2407097
Freedman R, Hunter SK, Law AJ, D’Alessandro A, Noonan K, Wyrwa A, Camille Hoffman M (2020) Maternal choline and respiratory coronavirus effects on fetal brain development. J Psychiatr Res 128:1–4. https://doi.org/10.1016/j.jpsychires.2020.05.019
doi: 10.1016/j.jpsychires.2020.05.019
pubmed: 32474140
pmcid: 7247782
Fröhlich E, Wahl R (2021) Physiological role and use of thyroid hormone metabolites - potential utility in COVID-19 patients. Front Endocrinol (lausanne) 12:587518. https://doi.org/10.3389/fendo.2021.587518
doi: 10.3389/fendo.2021.587518
pubmed: 33981284
Galmés S, Serra F, Palou A (2020) Current state of evidence: influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients 12(9):2738. https://doi.org/10.3390/nu12092738
doi: 10.3390/nu12092738
pubmed: 32911778
pmcid: 7551697
Gheorghe G, Ilie M, Bungau S, Stoian AMP, Bacalbasa N, Diaconu CC (2021) Is there a relationship between COVID-19 and hyponatremia? Medicina (kaunas) 57(1):55. https://doi.org/10.3390/medicina57010055
doi: 10.3390/medicina57010055
pubmed: 33435405
Glover ZK, Basa L, Moore B, Laurence JS, Sreedhara A (2015) Metal ion interactions with mAbs: part 1. Mabs 7(5):901–911. https://doi.org/10.1080/19420862.2015.1062193
doi: 10.1080/19420862.2015.1062193
pubmed: 26121230
pmcid: 4622628
Goc A, Niedzwiecki A, Rath M (2021) Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Sci Rep 11(1):5207. https://doi.org/10.1038/s41598-021-84850-1
doi: 10.1038/s41598-021-84850-1
pubmed: 33664446
pmcid: 7933164
Goud PT, Bai D, Abu-Soud HM (2021) A multiple-hit hypothesis involving reactive oxygen species and myeloperoxidase explains clinical deterioration and fatality in COVID-19. Int J Biol Sci 17(1):62–72. https://doi.org/10.7150/ijbs.51811
doi: 10.7150/ijbs.51811
pubmed: 33390833
pmcid: 7757048
Goyal MM, Basak A (2010) Human catalase: looking for complete identity. Protein Cell 1(10):888–897. https://doi.org/10.1007/s13238-010-0113-z
doi: 10.1007/s13238-010-0113-z
pubmed: 21204015
pmcid: 4875117
Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, Bhattoa HP (2020) Evidence that Vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12(4):988. https://doi.org/10.3390/nu12040988
doi: 10.3390/nu12040988
pubmed: 32252338
pmcid: 7231123
Haase H, Rink L (2014) Zinc signals and immune function. BioFactors 40(1):27–40. https://doi.org/10.1002/biof.1114
doi: 10.1002/biof.1114
pubmed: 23804522
Habib HM, Ibrahim S, Zaim A, Ibrahim WH (2021) The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 136:111228. https://doi.org/10.1016/j.biopha.2021.111228
doi: 10.1016/j.biopha.2021.111228
pubmed: 33454595
pmcid: 7836924
Hackbarth S, Islam R, Šubr V, Etrych T, Fang J (2022) Singlet oxygen in vivo: It is all about intensity. J Pers Med 12(6):891. https://doi.org/10.3390/jpm12060891
doi: 10.3390/jpm12060891
pubmed: 35743675
pmcid: 9224567
Hariharan S, Dharmaraj S (2020) Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology 28(3):667–695. https://doi.org/10.1007/s10787-020-00690-x
doi: 10.1007/s10787-020-00690-x
pubmed: 32144521
pmcid: 7222958
Heller RA, Sun Q, Hackler J, Seelig J, Seibert L, Cherkezov A, Minich WB, Seemann P, Diegmann J, Pilz M, Bachmann M, Ranjbar A, Moghaddam A, Schomburg L (2021) Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol 38:101764. https://doi.org/10.1016/j.redox.2020.101764
doi: 10.1016/j.redox.2020.101764
pubmed: 33126054
Hemila H, de Man AME (2021) Vitamin C and COVID-19. Front Med (lausanne). 7:559811. https://doi.org/10.3389/fmed.2020.559811
doi: 10.3389/fmed.2020.559811
pubmed: 33537320
pmcid: 7848027
Holford P, Carr AC, Jovic TH, Ali SR, Whitaker IS, Marik PE, Smith AD (2020) Vitamin C-an adjunctive therapy for respiratory infection, sepsis and COVID-19. Nutrients 12(12):3760. https://doi.org/10.3390/nu12123760
doi: 10.3390/nu12123760
pubmed: 33297491
pmcid: 7762433
Holick MF (2020) Sunlight, UV radiation, vitamin D, and skin cancer: how much sunlight do we need? Adv Exp Med Biol 1268:19–36. https://doi.org/10.1007/978-3-030-46227-7_2
doi: 10.1007/978-3-030-46227-7_2
pubmed: 32918212
Houillier P, Salles JP (2021) Biochemical assessment of phosphate homeostasis. Arch Pediatr 28(7):588–593. https://doi.org/10.1016/j.arcped.2021.09.001
doi: 10.1016/j.arcped.2021.09.001
pubmed: 34598836
Im JH, Je YS, Baek J, Chung MH, Kwon HY, Lee JS (2020) Nutritional status of patients with COVID-19. Int J Infect Dis 100:390–393. https://doi.org/10.1016/j.ijid.2020.08.018
doi: 10.1016/j.ijid.2020.08.018
pubmed: 32795605
pmcid: 7418699
Iwegbulem O, Wang J, Pfirrmann RW, Redmond HP (2022) The role of taurine derivatives in the putative therapy of COVID-19-induced inflammation. Ir J Med Sci 191(1):485–486. https://doi.org/10.1007/s11845-021-02522-5
doi: 10.1007/s11845-021-02522-5
pubmed: 33598881
Jorge-Aarón RM, Rosa-Ester MP (2020) N-acetylcysteine as a potential treatment for COVID-19. Future Microbiol 15:959–962. https://doi.org/10.2217/fmb-2020-0074
doi: 10.2217/fmb-2020-0074
pubmed: 32662664
Jose J, Magoon R, Kapoor PM (2021) Magnesium: the neglected cation in COVID-19? J Anaesthesiol Clin Pharmacol 37(1):141–142. https://doi.org/10.4103/joacp.JOACP_628_20
doi: 10.4103/joacp.JOACP_628_20
pubmed: 34103847
pmcid: 8174422
Kanofsky JR (1989) Singlet oxygen production by biological systems. Chem Biol Interact 70(1–2):1–28. https://doi.org/10.1016/0009-2797(89)90059-8
doi: 10.1016/0009-2797(89)90059-8
pubmed: 2472224
Kapur A, Sharma M, Sageena G (2022) Therapeutic potential of N-acetyl cysteine during COVID-19 epoch. World J Virol 11(2):104–106. https://doi.org/10.5501/wjv.v11.i2.104
doi: 10.5501/wjv.v11.i2.104
pubmed: 35433335
pmcid: 8966593
Kaya MO, Pamukçu E, Yakar B (2021) The role of vitamin D deficiency on COVID-19: a systematic review and meta-analysis of observational studies. Epidemiol Health 43:e2021074. https://doi.org/10.4178/epih.e2021074
doi: 10.4178/epih.e2021074
pubmed: 34607398
pmcid: 8769802
Khatiwada S, Subedi A (2021) A mechanistic link between selenium and coronavirus disease 2019 (COVID-19). Curr Nutr Rep 10(2):125–136. https://doi.org/10.1007/s13668-021-00354-4
doi: 10.1007/s13668-021-00354-4
pubmed: 33835432
pmcid: 8033553
Kim C, Cha YN (2014) Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids 46(1):89–100. https://doi.org/10.1007/s00726-013-1545-6
doi: 10.1007/s00726-013-1545-6
pubmed: 23933994
Kogan S, Sood A, Garnick MS (2017) Zinc and wound healing: a review of zinc physiology and clinical applications. Wounds 29(4):102–106
pubmed: 28448263
Krishnaven GV et al (2020) Maternal B12, Folate and homocysteine concentrations and offspring cortisol and cardiovascular responses to stress. J Clin Endocrinol Metab 105(7):e2591–e2599. https://doi.org/10.1210/clinem/dgz114
doi: 10.1210/clinem/dgz114
Kumrungsee T, Zhang P, Chartkul M, Yanaka N, Kato N (2020) Potential role of vitamin B6 in ameliorating the severity of COVID-19 and its complications. Front Nutr 7:562051. https://doi.org/10.3389/fnut.2020.562051
doi: 10.3389/fnut.2020.562051
pubmed: 33195363
pmcid: 7658555
Laganà AS, Unfer V, Garzon S, Bizzarri M (2020) Role of inositol to improve surfactant functions and reduce IL-6 levels: a potential adjuvant strategy for SARS-CoV-2 pneumonia? Med Hypotheses 144:110262. https://doi.org/10.1016/j.mehy.2020.110262
doi: 10.1016/j.mehy.2020.110262
pubmed: 33254564
pmcid: 7480225
Landis HE, Getachew B, Tizabi Y (2022) Therapeutic potential of flavonoids and zinc in COVID-19. Medpress Nutr Food Sci. 1(1):202111001
pubmed: 35340665
Liu F, Zhu Y, Zhang J, Li Y, Peng Z (2020) Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial. BMJ Open 10(7):e039519. https://doi.org/10.1136/bmjopen-2020-039519
doi: 10.1136/bmjopen-2020-039519
pubmed: 32641343
pmcid: 7348463
Liu S, Zhang L, Weng H, Yang F, Jin H, Fan F, Zheng X, Yang H, Li H, Zhang Y, Li J (2021) Association between average plasma potassium levels and 30-day mortality during hospitalization in patients with COVID-19 in Wuhan. China Int J Med Sci 18(3):736–743. https://doi.org/10.7150/ijms.50965
doi: 10.7150/ijms.50965
pubmed: 33437208
Lopresti AL (2019) The effects of psychological and environmental stress on micronutrient concentrations in the body: a review of the evidence. Adv Nutr 11:103–112. https://doi.org/10.1093/advances/nmz082
doi: 10.1093/advances/nmz082
pmcid: 7442351
Luzzatto L, Ally M, Notaro R (2020) Glucose-6-phosphate dehydrogenase deficiency. Blood 136(11):1225–1240. https://doi.org/10.1182/blood.2019000944
doi: 10.1182/blood.2019000944
pubmed: 32702756
Maares M, Hackler J, Haupt A, Heller RA, Bachmann M, Diegmann J, Moghaddam A, Schomburg L, Haase H (2022) Free zinc as a predictive marker for COVID-19 mortality risk. Nutrients 14(7):1407. https://doi.org/10.3390/nu14071407
doi: 10.3390/nu14071407
pubmed: 35406020
pmcid: 9002649
Magnani F, Nenci S, Millana Fananas E, Ceccon M, Romero E, Fraaije MW, Mattevi A (2017) Crystal structures and atomic model of NADPH oxidase. Proc Natl Acad Sci U S A 114(26):6764–6769. https://doi.org/10.1073/pnas.1702293114
doi: 10.1073/pnas.1702293114
pubmed: 28607049
pmcid: 5495252
Maitra D, Shaeib F, Abdulhamid I, Abdulridha RM, Saed GM, Diamond MP, Pennathur S, Abu-Souda HM (2013) Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2013.04.009
doi: 10.1016/j.freeradbiomed.2013.04.009
pubmed: 23624305
pmcid: 3863623
Mallouh AA, Abu-Osba YK (1987) Bacterial infections in children with glucose-6-phosphate dehydrogenase deficiency. J Pediatr 111(6 Pt 1):850–852. https://doi.org/10.1016/s0022-3476(87)80202-0
doi: 10.1016/s0022-3476(87)80202-0
pubmed: 3681550
Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46(1):7–20. https://doi.org/10.1007/s00726-012-1361-4
doi: 10.1007/s00726-012-1361-4
pubmed: 22810731
Martinez SS, Huang Y, Acuna L, Laverde E, Trujillo D, Barbieri MA, Tamargo J, Campa A, Baum MK (2021) Role of selenium in viral infections with a major focus on SARS-CoV-2. Int J Mol Sci 23(1):280. https://doi.org/10.3390/ijms23010280
doi: 10.3390/ijms23010280
pubmed: 35008706
pmcid: 8745607
Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M (2015) T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med 212(4):555–568. https://doi.org/10.1084/jem.20140857
doi: 10.1084/jem.20140857
pubmed: 25824823
pmcid: 4387287
Matsuyama T, Yoshinaga SK, Shibue K, Mak TW (2021) Comorbidity-associated glutamine deficiency is a predisposition to severe COVID-19. Cell Death Differ 28(12):3199–3213. https://doi.org/10.1038/s41418-021-00892-y
doi: 10.1038/s41418-021-00892-y
pubmed: 34663907
pmcid: 8522258
Mayadas TN, Cullere X, Lowell CA (2014) The multifaceted functions of neutrophils. Annu Rev Pathol 9:181–218. https://doi.org/10.1146/annurev-pathol-020712-164023
doi: 10.1146/annurev-pathol-020712-164023
pubmed: 24050624
Mehta S, Flores H, Walters B, Sreedhara A (2021) Metal ion interactions with mAbs: Part 2. Zinc-mediated aggregation of IgG1 monoclonal antibodies. Pharm Res 38(8):1387–1395. https://doi.org/10.1007/s11095-021-03089-7
doi: 10.1007/s11095-021-03089-7
pubmed: 34382142
Meisel E, Efros O, Bleier J, Beit Halevi T, Segal G, Rahav G, Leibowitz A, Grossman E (2021) Folate levels in patients hospitalized with coronavirus disease 2019. Nutrients 13(3):812. https://doi.org/10.3390/nu13030812
doi: 10.3390/nu13030812
pubmed: 33801194
pmcid: 8001221
Miyamoto S, Ronsein GE, Prado FM, Uemi M, Corrêa TC, Toma IN, Bertolucci A, Oliveira MC, Motta FD, Medeiros MH, Mascio PD (2007) Biological hydroperoxides and singlet molecular oxygen generation. IUBMB Life 59(4–5):322–331. https://doi.org/10.1080/15216540701242508
doi: 10.1080/15216540701242508
pubmed: 17505972
Moghaddam A, Heller RA, Sun Q, Seelig J, Cherkezov A, Seibert L, Hackler J, Seemann P, Diegmann J, Pilz M, Bachmann M, Minich WB, Schomburg L (2020) Selenium deficiency is associated with mortality. Nutrients 12(7):2098. https://doi.org/10.3390/nu12072098
doi: 10.3390/nu12072098
pubmed: 32708526
pmcid: 7400921
Mohanty RR, Padhy BM, Das S, Meher BR (2021) Therapeutic potential of N-acetyl cysteine (NAC) in preventing cytokine storm in COVID-19 review of current evidence. Eur Rev Med Pharmacol Sci 25(6):2802–2807. https://doi.org/10.26355/eurrev_202103_25442
doi: 10.26355/eurrev_202103_25442
pubmed: 33829465
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43(4):477–503. https://doi.org/10.1016/j.freeradbiomed.2007.03.034
doi: 10.1016/j.freeradbiomed.2007.03.034
pubmed: 17640558
Muri J, Heer S, Matsushita M, Pohlmeier L, Tortola L, Fuhrer T, Conrad M, Zamboni N, Kisielow J, Kopf M (2018) The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat Commun 9(1):1851. https://doi.org/10.1038/s41467-018-04274-w
doi: 10.1038/s41467-018-04274-w
pubmed: 29749372
pmcid: 5945637
Nagarkoti S, Dubey M, Sadaf S, Awasthi D, Chandra T, Jagavelu K, Kumar S, Dikshit M (2019) Catalase S-glutathionylation by NOX2 and mitochondrial-derived ROS adversely affects mice and human neutrophil survival. Inflammation 42(6):2286–2296. https://doi.org/10.1007/s10753-019-01093-z
doi: 10.1007/s10753-019-01093-z
pubmed: 31646444
Nai A, Lorè NI, Pagani A, De Lorenzo R, Di Modica S, Saliu F, Cirillo DM, Rovere-Querini P, Manfredi AA, Silvestri L (2021) Hepcidin levels predict Covid-19 severity and mortality in a cohort of hospitalized Italian patients. Am J Hematol 96(1):E32–E35. https://doi.org/10.1002/ajh.26027
doi: 10.1002/ajh.26027
pubmed: 33075189
Nauseef WM (1988) Myeloperoxidase deficiency. Hematol Oncol Clin North Am 2(1):135–158 (PMID: 1963623)
doi: 10.1016/S0889-8588(18)30634-8
pubmed: 2831185
Neiers F, Jarriault D, Menetrier F, Briand L, Heydel JM (2021) The odorant metabolizing enzyme UGT2A1: immunolocalization and impact of the modulation of its activity on the olfactory response. PLoS ONE 16(3):e0249029. https://doi.org/10.1371/journal.pone.0249029
doi: 10.1371/journal.pone.0249029
pubmed: 33765098
pmcid: 7993815
Noori M, Nejadghaderi SA, Sullman MJM, Carson-Chahhoud K, Kolahi AA, Safiri S (2022) Epidemiology, prognosis and management of potassium disorders in covid-19. Rev Med Virol 32(1):e2262. https://doi.org/10.1002/rmv.2262
doi: 10.1002/rmv.2262
pubmed: 34077995
Noreng S, Ota N, Sun Y, Ho H, Johnson M, Arthur CP, Schneider K, Lehoux I, Davies CW, Mortara K, Wong K, Seshasayee D, Masureel M, Payandeh J, Yi T, Koerber JT (2022) Structure of the core human NADPH oxidase NOX2. Nat Commun 13(1):6079. https://doi.org/10.1038/s41467-022-33711-0
doi: 10.1038/s41467-022-33711-0
pubmed: 36241643
pmcid: 9568551
Notz Q, Herrmann J, Schlesinger T, Helmer P, Sudowe S, Sun Q, Hackler J, Roeder D, Lotz C, Meybohm P, Kranke P, Schomburg L, Stoppe C (2021) Clinical significance of micronutrient supplementation in critically ill COVID-19 patients with severe ARDS. Nutrients 13(6):2113. https://doi.org/10.3390/nu13062113
doi: 10.3390/nu13062113
pubmed: 34203015
pmcid: 8235175
Nowak G, Szewczyk B, Pilc A (2005) Zinc and depression. An update. Pharmacol Rep 57(6):713–718
pubmed: 16382189
Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nat Rev Immunol 15(3):160–171. https://doi.org/10.1038/nri3795
doi: 10.1038/nri3795
pubmed: 25698678
Olivari L, Riccardi N, Rodari P, Angheben A, Artioli P, Salgarello M (2020) COVID-19 pneumonia: increased choline uptake with 18F-choline PET/CT. Eur J Nucl Med Mol Imaging 47(10):2476–2477. https://doi.org/10.1007/s00259-020-04870-3
doi: 10.1007/s00259-020-04870-3
pubmed: 32500168
pmcid: 7272208
Osman W, Al Fahdi F, Al Salmi I, Al Khalili H, Gokhale A, Khamis F (2021) Serum calcium and vitamin D levels: correlation with severity of COVID-19 in hospitalized patients in royal hospital, Oman. Int J Infect Dis 107:153–163. https://doi.org/10.1016/j.ijid.2021.04.050
doi: 10.1016/j.ijid.2021.04.050
pubmed: 33892191
pmcid: 8057687
Panchariya L, Khan WA, Kuila S, Sonkar K, Sahoo S, Ghoshal A, Kumar A, Verma DK, Hasan A, Khan MA, Jain N, Mohapatra AK, Das S, Thakur JK, Maiti S, Nanda RK, Halder R, Sunil S (2021) Arockiasamy A (2021) Zinc
doi: 10.1039/d1cc03563k
pubmed: 34514483
Petrucco S, Percudani R (2008) Structural recognition of DNA by poly(ADP-ribose)polymerase-like zinc finger families. FEBS J 275(5):883–893. https://doi.org/10.1111/j.1742-4658.2008.06259.x
doi: 10.1111/j.1742-4658.2008.06259.x
pubmed: 18215166
Peyneau M, Granger V, Wicky PH, Khelifi-Touhami D, Timsit JF, Lescure FX, Yazdanpanah Y, Tran-Dinh A, Montravers P, Monteiro RC, Chollet-Martin S, Hurtado-Nedelec M, de Chaisemartin L (2022) Innate immune deficiencies are associated with severity and poor prognosis in patients with COVID-19. Sci Rep 12(1):638. https://doi.org/10.1038/s41598-021-04705-7
doi: 10.1038/s41598-021-04705-7
pubmed: 35022495
pmcid: 8755788
Pierro DIF, Khan A, Bertuccioli A, Maffioli P, Derosa G, Khan S, Khan BA, Nigar R, Ujjan I, Devrajani BR (2021) Quercetin phytosome® as a potential candidate for managing COVID-19. Minerva Gastroenterol (torino). 67(2):190–195. https://doi.org/10.23736/S2724-5985.20.02771-3
doi: 10.23736/S2724-5985.20.02771-3
pubmed: 33016666
Pisano M, Hilas O (2016) Zinc and taste disturbances in older adults: a review of the literature. Consult Pharm 31(5):267–270. https://doi.org/10.4140/TCP.n.2016.267
doi: 10.4140/TCP.n.2016.267
pubmed: 27178656
Prasad AS (2001) Recognition of zinc-deficiency syndrome. Nutrition 17(1):67–69. https://doi.org/10.1016/s0899-9007(00)00469-x
doi: 10.1016/s0899-9007(00)00469-x
pubmed: 11165897
Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4(2):176–190. https://doi.org/10.3945/an.112.003210
doi: 10.3945/an.112.003210
pubmed: 23493534
pmcid: 3649098
Raines NH, Ganatra S, Nissaisorakarn P, Pandit A, Morales A, Asnani A, Sadrolashrafi M, Maheshwari R, Patel R, Bang V, Shreyder K, Brar S, Singh A, Dani SS, Knapp S, Poyan Mehr A, Brown RS, Zeidel ML, Bhargava R, Schlondorff J, Steinman TI, Mukamal KJ, Parikh SM (2020) Niacinamide may be associated with improved outcomes in COVID-19-related acute kidney injury: an observational study. Kidney 360. 2(1):33–41. https://doi.org/10.34067/KID.0006452020
doi: 10.34067/KID.0006452020
pubmed: 35368823
pmcid: 8785722
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G (2019) The role of zinc in antiviral immunity. Adv Nutr 10(4):696–710. https://doi.org/10.1093/advances/nmz013
doi: 10.1093/advances/nmz013
pubmed: 31305906
pmcid: 6628855
Reusch N, De Domenico E, Bonaguro L, Schulte-Schrepping J, Baßler K, Schultze JL, Aschenbrenner AC (2021) Neutrophils in COVID-19. Front Immunol 12:652470. https://doi.org/10.3389/fimmu.2021.652470
doi: 10.3389/fimmu.2021.652470
pubmed: 33841435
pmcid: 8027077
Rosenblum H, Wessler JD, Gupta A, Maurer MS, Bikdeli B (2020) Zinc deficiency and heart failure: a systematic review of the current literature. J Card Fail 26(2):180–189. https://doi.org/10.1016/j.cardfail.2020.01.005
doi: 10.1016/j.cardfail.2020.01.005
pubmed: 31935458
Schöllhammer I, Poll DS, Bickel MH (1975) Liver microsomal beta-glucuronidase and UDP-glucuronyltransferase. Enzyme 20(5):269–276. https://doi.org/10.1159/000458949
doi: 10.1159/000458949
pubmed: 230
Schomburg L (2022) Selenium deficiency in COVID-19-a possible long-lasting toxic relationship. Nutrients 14(2):283. https://doi.org/10.3390/nu14020283
doi: 10.3390/nu14020283
pubmed: 35057464
pmcid: 8781157
Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226(2):195–202. https://doi.org/10.1016/S0378-1097(03)00611-6
doi: 10.1016/S0378-1097(03)00611-6
pubmed: 14553911
Seers T, Davenport R (2020) Phosphate metabolism and respiratory alkalosis: a forgotten lesson in COVID-19. Age Ageing 49(6):927. https://doi.org/10.1093/ageing/afaa176
doi: 10.1093/ageing/afaa176
pubmed: 32725143
Sengupta R, Holmgren A (2014) Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J Biol Chem 5(1):68–74. https://doi.org/10.4331/wjbc.v5.i1.68
doi: 10.4331/wjbc.v5.i1.68
pubmed: 24600515
pmcid: 3942543
Shauly-Aharonov M, Shafrir A, Paltiel O, Calderon-Margalit R, Safadi R, Bicher R, Barenholz-Goultschin O, Stokar J (2021) Both high and low pre-infection glucose levels associated with increased risk for severe COVID-19: new insights from a population-based study. PLoS ONE 16(7):e02547. https://doi.org/10.1371/journal.pone.0254847
doi: 10.1371/journal.pone.0254847
Shelton JF, Shastri AJ, Fletez-Brant K, Aslibekyan S, Auton A (2022) The UGT2A1/UGT2A2 locus is associated with COVID-19-related loss of smell or taste. Nat Genet 54(2):121–124. https://doi.org/10.1038/s41588-021-00986-w
doi: 10.1038/s41588-021-00986-w
pubmed: 35039640
Shi Z, Puyo CA (2020) N-Acetylcysteine to combat COVID-19: An evidence review. Ther Clin Risk Manag 16:1047–1055. https://doi.org/10.2147/TCRM.S273700
doi: 10.2147/TCRM.S273700
pubmed: 33177829
pmcid: 7649937
Shive W, Pinkerton F, Humphreys J, Johnson MM, Hamilton WG, Matthews KS (1986) Development of a chemically defined serum- and protein-free medium for growth of human peripheral lymphocytes. Proc Natl Acad Sci USA 83(1):9–13. https://doi.org/10.1073/pnas.83.1.9
doi: 10.1073/pnas.83.1.9
pubmed: 3079905
pmcid: 322780
Shrivastava S, Chelluboina S, Jedge P, Doke P, Palkar S, Mishra AC, Arankalle VA (2021) Elevated levels of neutrophil activated proteins, alpha-defensins (DEFA1), calprotectin (S100A8/A9) and myeloperoxidase (MPO) are associated with disease severity in COVID-19 patients. Front Cell Infect Microbiol 11:7512. https://doi.org/10.3389/fcimb.2021.751232
doi: 10.3389/fcimb.2021.751232
Singh CK, Chhabra G, Patel A, Chang H, Ahmad N (2021) Dietary phytochemicals in zinc homeostasis: a strategy for prostate cancer management. Nutrients 13(6):1867. https://doi.org/10.3390/nu13061867
doi: 10.3390/nu13061867
pubmed: 34070833
pmcid: 8226978
Skesters A, Kustovs D, Lece A, Moreino E, Petrosina E, Rainsford KKD (2022) Selenium, selenoprotein P, and oxidative stress levels in SARS-CoV-2 patients during illness and recovery. Inflammopharmacology 30(2):499–503. https://doi.org/10.1007/s10787-022-00925-z
doi: 10.1007/s10787-022-00925-z
pubmed: 35157169
pmcid: 8853000
Skovsen E, Snyder JW, Lambert JDC, Ogilby PR (2005) Lifetime and diffusion of singlet oxygen in a cell. J Phys Chem B 109(18):8570–8573. https://doi.org/10.1021/jp051163i
doi: 10.1021/jp051163i
pubmed: 16852012
Skrajnowska D, Bobrowska-Korczak B (2019) Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 11(10):2273. https://doi.org/10.3390/nu11102273
doi: 10.3390/nu11102273
pubmed: 31546724
pmcid: 6835436
Soliman OM, Thabet AMA, Abudahab GM, Kamel EZ (2022) The impact of glutamine supplementation on the short-term mortality of COVID-19 diseased patients admitted to the ICU: A single-blind randomized clinical trial. Egypt J Anaesth 38(1):94–100. https://doi.org/10.1080/11101849.2022.2031811
doi: 10.1080/11101849.2022.2031811
Stief TW (2003) The physiology and pharmacology of singlet oxygen. Med Hypotheses 60(4):567–572. https://doi.org/10.1016/s0306-9877(03)00026-4
doi: 10.1016/s0306-9877(03)00026-4
pubmed: 12615524
pmcid: 7157913
Stief TW (2007) Singlet oxygen potentiates thrombolysis. Clin Appl Thromb Hemost 13(3):259–278. https://doi.org/10.1177/1076029607302404
doi: 10.1177/1076029607302404
pubmed: 17636188
Stockwell BR, Jiang X, Gu W (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol 30(6):478–490. https://doi.org/10.1016/j.tcb.2020.02.009
doi: 10.1016/j.tcb.2020.02.009
pubmed: 32413317
pmcid: 7230071
Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, Salvador D Jr, Groothof D, Minder B, Kopp-Heim D, Hautz WE, Eisenga MF, Franco OH, Glisic M, Muka T (2020) Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol 35(8):763–773. https://doi.org/10.1007/s10654-020-00678-5
doi: 10.1007/s10654-020-00678-5
pubmed: 32816244
pmcid: 7438401
tom Dieck H, Döring F, Roth HP, Daniel H (2003) Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays. J Nutr 133(4):1004–1010. https://doi.org/10.1093/jn/133.4.1004
doi: 10.1093/jn/133.4.1004
pubmed: 12672911
Trapani V, Rosanoff A, Baniasadi S, Barbagallo M, Castiglioni S, Guerrero-Romero F, Iotti S, Mazur A, Micke O, Pourdowlat G, Scarpati G, Wolf FI, Maier JA (2022) The relevance of magnesium homeostasis in COVID-19. Eur J Nutr 61(2):625–636. https://doi.org/10.1007/s00394-021-02704-y
doi: 10.1007/s00394-021-02704-y
pubmed: 34687321
van Kempen TATG, Deixler E (2021) SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. Am J Physiol Endocrinol Metab 320(1):E2–E6. https://doi.org/10.1152/ajpendo.00474.2020
doi: 10.1152/ajpendo.00474.2020
pubmed: 33174766
van Eijk LE, Offringa AK, Bernal ME, Bourgonje AR, van Goor H, Hillebrands JL (2022) The disease-modifying role of taurine and its therapeutic potential in coronavirus disease 2019 (COVID-19). Adv Exp Med Biol 1370:3–21. https://doi.org/10.1007/978-3-030-93337-1_1
doi: 10.1007/978-3-030-93337-1_1
pubmed: 35882777
Vazirani AA (2021) COVID-19, an incentive to tackle sugar in hospitals and at home. J Endocr Soc 5(6):bvab037. https://doi.org/10.1210/jendso/bvab037
doi: 10.1210/jendso/bvab037
pubmed: 33977196
pmcid: 7989335
Vick DJ (2020) Glucose-6-phosphate dehydrogenase deficiency and COVID-19 infection. Mayo Clin Proc 95(8):1803–1804. https://doi.org/10.1016/j.mayocp.2020.05.035
doi: 10.1016/j.mayocp.2020.05.035
pubmed: 32680625
Vucić M, Gavella M, Bozikov V, Ashcroft SJ, Rocić B (1997) Superoxide dismutase activity in lymphocytes and polymorphonuclear cells of diabetic patients. Eur J Clin Chem Clin Biochem 35(7):517–521. https://doi.org/10.1515/cclm.1997.35.7.517
doi: 10.1515/cclm.1997.35.7.517
pubmed: 9263727
Wang W, Shen M, Tao Y, Fairley CK, Zhong Q, Li Z, Chen H, Ong JJ, Zhang D, Zhang K, Xing N, Guo H, Qin E, Guan X, Yang F, Zhang S, Zhang L, He K (2021) Elevated glucose level leads to rapid COVID-19 progression and high fatality. BMC Pulm Med 21(1):64. https://doi.org/10.1186/s12890-021-01413-w
doi: 10.1186/s12890-021-01413-w
pubmed: 33627118
pmcid: 7903375
Wee AKH (2021) COVID-19’s toll on the elderly and those with diabetes mellitus – is vitamin B12 deficiency an accomplice? Med Hypotheses 146(2021):11037. https://doi.org/10.1016/j.mehy.2020.110374
doi: 10.1016/j.mehy.2020.110374
Weir EK, Thenappan T, Bhargava M, Chen Y (2020) Does vitamin D deficiency increase the severity of COVID-19? Clin Med (lond) 20(4):e107–e108. https://doi.org/10.7861/clinmed.2020-0301
doi: 10.7861/clinmed.2020-0301
pubmed: 32503801
Wessels I, Maywald M, Rink L (2017) Zinc as a gatekeeper of immune function. Nutrients 9(12):1286. https://doi.org/10.3390/nu9121286
doi: 10.3390/nu9121286
pubmed: 29186856
pmcid: 5748737
Williams RJ (1956) Biochemical individuality, the basis for the genetotrophic concept. Wiley & Sons Inc, New York
Winterbourn CC, Kettle AJ, Hampton MB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792. https://doi.org/10.1146/annurev-biochem-060815-014442
doi: 10.1146/annurev-biochem-060815-014442
pubmed: 27050287
Witter AR, Okunnu BM, Berg RE (2016) The essential role of neutrophils during infection with the intracellular bacterial pathogen Listeria monocytogenes. J Immunol 197(5):1557–1565. https://doi.org/10.4049/jimmunol.1600599
doi: 10.4049/jimmunol.1600599
pubmed: 27543669
Wong KK, Lee SWH, Kua KP (2021) N-Acetylcysteine as adjuvant therapy for COVID-19 - a perspective on the current state of the evidence. J Inflamm Res 14:2993–3013. https://doi.org/10.2147/JIR.S306849
doi: 10.2147/JIR.S306849
pubmed: 34262324
pmcid: 8274825
Xu W, Liu Y, Zou X, Luo H, Wu W, Xia J, Chan MTV, Fang S, Shu Y, Wu WKK, Zhang L (2022) Hypozincemia in COVID-19 patients correlates with stronger antibody response. Front Immunol 12:785599. https://doi.org/10.3389/fimmu.2021.785599
doi: 10.3389/fimmu.2021.785599
pubmed: 35058926
pmcid: 8763690
Yamaguchi M, Mori S, Suketa Y (1990) Effects of Ca2+, Zn2+ and Cd2+ on uridine diphosphate-glucuronyltransferase and beta-glucuronidase activities in rat liver microsomes. Chem Pharm Bull (tokyo) 38(1):159–163. https://doi.org/10.1248/cpb.38.159
doi: 10.1248/cpb.38.159
pubmed: 2110867
Yamanaka Y, Matsugano S, Yoshikawa Y, Orino K (2016) Binding analysis of human immunoglobulin G as a zinc-binding protein. Antibodies (basel) 5(2):13. https://doi.org/10.3390/antib5020013
doi: 10.3390/antib5020013
pubmed: 31557994
Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176. https://doi.org/10.1016/j.tcb.2015.10.014
doi: 10.1016/j.tcb.2015.10.014
pubmed: 26653790
Yang C, Ma X, Wu J, Han J, Zheng Z, Duan H, Liu Q, Wu C, Dong Y, Dong L (2021) Low serum calcium and phosphorus and their clinical performance in detecting COVID-19 patients. J Med Virol 93(3):1639–1651. https://doi.org/10.1002/jmv.26515
doi: 10.1002/jmv.26515
pubmed: 32926424
Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, Wang X, Zhou F, Zhao W, Gao M, Chang S, Xie YC, Tian G, Jiang HW, Tao SC, Shen J, Jiang Y, Jiang H, Xu Y, Zhang S, Zhang Y, Xu HE (2020) Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368(6498):1499–1504. https://doi.org/10.1126/science.abc1560
doi: 10.1126/science.abc1560
pubmed: 32358203
pmcid: 7199908
Zahra SA, Iddawela S, Pillai K, Choudhury RY, Harky A (2020) Can symptoms of anosmia and dysgeusia be diagnostic for COVID-19? Brain Behav 10(11):e01839. https://doi.org/10.1002/brb3.1839
doi: 10.1002/brb3.1839
pubmed: 32935915
pmcid: 7667367
Zeng HL, Yang Q, Yuan P, Wang X, Cheng L (2021) Associations of essential and toxic metals/metalloids in whole blood with both disease severity and mortality in patients with COVID-19. FASEB J 35(3):e21392. https://doi.org/10.1096/fj.202002346RR
doi: 10.1096/fj.202002346RR
pubmed: 33577131
Zetterberg A, Engström W (1981) Glutamine and the regulation of DNA replication and cell multiplication in fibroblasts. J Cell Physiol 108(3):365–373. https://doi.org/10.1002/jcp.1041080310
doi: 10.1002/jcp.1041080310
pubmed: 7287825
Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP (2020) Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr 111(6):1297–1299. https://doi.org/10.1093/ajcn/nqaa095
doi: 10.1093/ajcn/nqaa095
pubmed: 32342979
Zhou X, Chen D, Wang L, Zhao Y, Wei L, Chen Z, Yang B (2020) Low serum calcium: a new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Biosci Rep 40(12):BSR2020690. https://doi.org/10.1042/BSR20202690
doi: 10.1042/BSR20202690
Zhou N, Yang X, Huang A, Chen Z (2021) The potential mechanism of N-acetylcysteine in treating COVID-19. Curr Pharm Biotechnol 22(12):1584–1590. https://doi.org/10.2174/1389201021999201228212043
doi: 10.2174/1389201021999201228212043
pubmed: 33371832