A real-time and convex model for the estimation of muscle force from surface electromyographic signals in the upper and lower limbs.

artificial neural network convex optimization electromyography linear regression load sharing

Journal

Frontiers in physiology
ISSN: 1664-042X
Titre abrégé: Front Physiol
Pays: Switzerland
ID NLM: 101549006

Informations de publication

Date de publication:
2023
Historique:
received: 14 11 2022
accepted: 01 02 2023
entrez: 16 3 2023
pubmed: 17 3 2023
medline: 17 3 2023
Statut: epublish

Résumé

Surface electromyography (sEMG) is a signal consisting of different motor unit action potential trains and records from the surface of the muscles. One of the applications of sEMG is the estimation of muscle force. We proposed a new real-time convex and interpretable model for solving the sEMG-force estimation. We validated it on the upper limb during isometric voluntary flexions-extensions at 30%, 50%, and 70% Maximum Voluntary Contraction in five subjects, and lower limbs during standing tasks in thirty-three volunteers, without a history of neuromuscular disorders. Moreover, the performance of the proposed method was statistically compared with that of the state-of-the-art (13 methods, including linear-in-the-parameter models, Artificial Neural Networks and Supported Vector Machines, and non-linear models). The envelope of the sEMG signals was estimated, and the representative envelope of each muscle was used in our analysis. The convex form of an exponential EMG-force model was derived, and each muscle's coefficient was estimated using the Least Square method. The goodness-of-fit indices, the residual signal analysis (bias and Bland-Altman plot), and the running time analysis were provided. For the entire model, 30% of the data was used for estimation, while the remaining 20% and 50% were used for validation and testing, respectively. The average R-square (%) of the proposed method was 96.77 ± 1.67 [94.38, 98.06] for the test sets of the upper limb and 91.08 ± 6.84 [62.22, 96.62] for the lower-limb dataset (MEAN ± SD [min, max]). The proposed method was not significantly different from the recorded force signal (

Identifiants

pubmed: 36923291
doi: 10.3389/fphys.2023.1098225
pii: 1098225
pmc: PMC10009160
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1098225

Informations de copyright

Copyright © 2023 Shirzadi, Marateb, Rojas-Martínez, Mansourian, Botter, Vieira dos Anjos, Martins Vieira and Mañanas.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer RM declared a shared affiliation with the authors AB & TV to the handling editor at the time of review.

Références

Res Q Exerc Sport. 2000 Jun;71 Suppl 2:114-20
pubmed: 25680021
IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8
pubmed: 20729161
IEEE J Biomed Health Inform. 2014 May;18(3):1043-50
pubmed: 24235314
J Appl Physiol (1985). 2004 Apr;96(4):1486-95
pubmed: 15016793
IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90
pubmed: 22588573
Biomed Eng Comput Biol. 2012 Jul 30;4:1-15
pubmed: 25288896
IEEE Trans Biomed Eng. 1995 Oct;42(10):1048-52
pubmed: 8582724
Sportverletz Sportschaden. 1997 Sep;11(3):79-86
pubmed: 9351163
J Electromyogr Kinesiol. 1992;2(2):59-68
pubmed: 20719599
J Gerontol A Biol Sci Med Sci. 2012 Aug;67(8):882-9
pubmed: 22389467
J Electromyogr Kinesiol. 2004 Jun;14(3):389-99
pubmed: 15094152
Ann Clin Biochem. 2022 May;59(3):162-165
pubmed: 34666549
Med Biol Eng Comput. 2010 Nov;48(11):1149-57
pubmed: 20524072
J Neurophysiol. 1993 Dec;70(6):2470-88
pubmed: 8120594
IEEE Trans Biomed Eng. 2007 Apr;54(4):751-4
pubmed: 17405383
Med Biol Eng Comput. 2022 Mar;60(3):683-699
pubmed: 35029815
J Phys Ther Sci. 2017 Jun;29(6):1019-1020
pubmed: 28626313
J Electromyogr Kinesiol. 2013 Feb;23(1):267-74
pubmed: 23123099
Med Eng Phys. 2010 Jun;32(5):429-36
pubmed: 20430679
Exp Brain Res. 2021 Aug;239(8):2569-2581
pubmed: 34191118
Ann Biomed Eng. 2019 Mar;47(3):778-789
pubmed: 30599054
IEEE Trans Biomed Eng. 1997 Oct;44(10):1024-8
pubmed: 9311171
IEEE Trans Biomed Eng. 2007 Apr;54(4):683-93
pubmed: 17405375
PLoS One. 2013;8(1):e53159
pubmed: 23308153
Exerc Sport Sci Rev. 2021 Jan;49(1):23-34
pubmed: 33044329
Stat Methods Med Res. 1999 Jun;8(2):135-60
pubmed: 10501650
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3634-3637
pubmed: 28269082
J Electromyogr Kinesiol. 2012 Jun;22(3):469-77
pubmed: 22284759
IEEE Trans Neural Syst Rehabil Eng. 2002 Mar;10(1):30-7
pubmed: 12173737
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):1935-1944
pubmed: 30281464
J Biomech. 2003 Feb;36(2):211-8
pubmed: 12547358
Mil Med. 2011 Sep;176(9):991-7
pubmed: 21987955
Biol Cybern. 2009 Jan;100(1):35-47
pubmed: 19015872
Sensors (Basel). 2022 May 24;22(11):
pubmed: 35684590
IEEE Trans Biomed Eng. 1999 Jun;46(6):730-9
pubmed: 10356879
Sensors (Basel). 2021 Jul 30;21(15):
pubmed: 34372403
J Electromyogr Kinesiol. 2010 Jun;20(3):375-87
pubmed: 19758823
Joint Eurohaptics Conf Symp Haptic Interfaces Virtual Environ Teleoper Syst. 2007;2007:39-43
pubmed: 20407618
Stat Med. 1995 Apr 30;14(8):811-9
pubmed: 7644861
IEEE Trans Neural Netw. 1994;5(6):989-93
pubmed: 18267874
Int J Environ Res Public Health. 2020 Sep 30;17(19):
pubmed: 33007880
PLoS Comput Biol. 2019 May 3;15(5):e1006985
pubmed: 31050667
Res Q Exerc Sport. 2011 Dec;82(4):610-6
pubmed: 22276402
J Electromyogr Kinesiol. 2008 Feb;18(1):116-27
pubmed: 17123833
IEEE Trans Neural Netw. 1995;6(1):273-7
pubmed: 18263309
Gait Posture. 2017 Jun;55:31-36
pubmed: 28411442
J Biomech. 2010 Jun 18;43(9):1827-30
pubmed: 20206935
Shanghai Arch Psychiatry. 2014 Apr;26(2):105-9
pubmed: 25092958
J Electromyogr Kinesiol. 2013 Apr;23(2):416-24
pubmed: 23273763
J Electromyogr Kinesiol. 2005 Feb;15(1):1-11
pubmed: 15642649
Exp Brain Res. 2020 Jan;238(1):39-50
pubmed: 31760455
Gait Posture. 2014 Apr;39(4):1115-21
pubmed: 24613374
Med Biol Eng Comput. 2013 Feb;51(1-2):187-96
pubmed: 23124815
IEEE Trans Neural Syst Rehabil Eng. 2015 Jan;23(1):41-50
pubmed: 24860036
J Physiol. 2009 May 15;587(Pt 10):2399-416
pubmed: 19289550
IEEE Trans Biomed Eng. 2006 Apr;53(4):712-9
pubmed: 16602578
Clin Biomech (Bristol, Avon). 2009 May;24(4):327-40
pubmed: 19285766
IEEE Trans Neural Syst Rehabil Eng. 2017 Sep;25(9):1431-1439
pubmed: 28113944
Muscle Nerve. 1996 May;19(5):563-73
pubmed: 8618553
Front Physiol. 2019 Sep 24;10:1185
pubmed: 31632282
Sensors (Basel). 2018 Sep 25;18(10):
pubmed: 30257489
BMC Health Serv Res. 2019 Jan 6;19(1):8
pubmed: 30612550
J Neurophysiol. 2004 Nov;92(5):2878-86
pubmed: 15201310
J Biomech. 1993 Apr-May;26(4-5):547-60
pubmed: 8478356
Biochem Med (Zagreb). 2015 Jun 05;25(2):141-51
pubmed: 26110027
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3861-4
pubmed: 22255182
Biomech Model Mechanobiol. 2012 Jan;11(1-2):19-34
pubmed: 21318374
Comput Methods Biomech Biomed Engin. 2015 Jul;18(9):1014-1023
pubmed: 24460394
J Med Signals Sens. 2014 Oct;4(4):237-46
pubmed: 25426427
IEEE Trans Neural Netw. 2006 Jul;17(4):893-908
pubmed: 16856653
IEEE Trans Biomed Eng. 1980 Jul;27(7):382-95
pubmed: 7409804
Front Hum Neurosci. 2017 Apr 19;11:190
pubmed: 28469567
J Neuroeng Rehabil. 2011 Sep 26;8:56
pubmed: 21943179
Biometrics. 1988 Sep;44(3):837-45
pubmed: 3203132
Biomed Eng Online. 2013 Sep 04;12:86
pubmed: 24007560
J Neurophysiol. 1999 Sep;82(3):1622-6
pubmed: 10482776
J Neural Eng. 2017 Aug;14(4):046005
pubmed: 28497771
Front Comput Neurosci. 2019 Apr 02;13:14
pubmed: 31001100
J Electromyogr Kinesiol. 1999 Jun;9(3):173-83
pubmed: 10328412
J Electromyogr Kinesiol. 2019 Dec;49:102363
pubmed: 31665683
IEEE Eng Med Biol Mag. 2001 Nov-Dec;20(6):47-54
pubmed: 11838258

Auteurs

Mehdi Shirzadi (M)

Automatic Control Department (ESAII), Biomedical Engineering Research Centre (CREB), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain.

Hamid Reza Marateb (HR)

Biomedical Engineering Department, Engineering Faculty, University of Isfahan, Isfahan, Iran.

Mónica Rojas-Martínez (M)

Automatic Control Department (ESAII), Biomedical Engineering Research Centre (CREB), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain.
Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain.

Marjan Mansourian (M)

Automatic Control Department (ESAII), Biomedical Engineering Research Centre (CREB), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain.

Alberto Botter (A)

Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.

Fabio Vieira Dos Anjos (F)

Postgraduate Program of Rehabilitation Sciences, Augusto Motta University (UNISUAM), Rio de Janeiro, Brazil.

Taian Martins Vieira (T)

Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.

Miguel Angel Mañanas (MA)

Automatic Control Department (ESAII), Biomedical Engineering Research Centre (CREB), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain.
Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain.

Classifications MeSH