Organization of the bacterial nucleoid by DNA-bridging proteins and globular crowders.
Brownian dynamics simulations
bacterial nucleoid
coarse-grained model
macromolecular crowders
nucleoid proteins
phase separation
Journal
Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977
Informations de publication
Date de publication:
2023
2023
Historique:
received:
05
12
2022
accepted:
16
01
2023
entrez:
17
3
2023
pubmed:
18
3
2023
medline:
18
3
2023
Statut:
epublish
Résumé
The genomic DNA of bacteria occupies only a fraction of the cell called the nucleoid, although it is not bounded by any membrane and would occupy a volume hundreds of times larger than the cell in the absence of constraints. The two most important contributions to the compaction of the DNA coil are the cross-linking of the DNA by nucleoid proteins (like H-NS and StpA) and the demixing of DNA and other abundant globular macromolecules which do not bind to the DNA (like ribosomes). The present work deals with the interplay of DNA-bridging proteins and globular macromolecular crowders, with the goal of determining the extent to which they collaborate in organizing the nucleoid. In order to answer this question, a coarse-grained model was developed and its properties were investigated through Brownian dynamics simulations. These simulations reveal that the radius of gyration of the DNA coil decreases linearly with the effective volume ratio of globular crowders and the number of DNA bridges formed by nucleoid proteins in the whole range of physiological values. Moreover, simulations highlight the fact that the number of DNA bridges formed by nucleoid proteins depends crucially on their ability to self-associate (oligomerize). An explanation for this result is proposed in terms of the mean distance between DNA segments and the capacity of proteins to maintain DNA-bridging in spite of the thermal fluctuations of the DNA network. Finally, simulations indicate that non-associating proteins preserve a high mobility inside the nucleoid while contributing to its compaction, leading to a DNA/protein complex which looks like a liquid droplet. In contrast, self-associating proteins form a little deformable network which cross-links the DNA chain, with the consequence that the DNA/protein complex looks more like a gel.
Identifiants
pubmed: 36925468
doi: 10.3389/fmicb.2023.1116776
pmc: PMC10011147
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1116776Informations de copyright
Copyright © 2023 Joyeux.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Chem Rev. 2013 Nov 13;113(11):8662-82
pubmed: 23941620
Nat Rev Mol Cell Biol. 2007 Jul;8(7):574-85
pubmed: 17519961
J Biol Chem. 2000 Jan 14;275(2):729-34
pubmed: 10625601
J Bacteriol. 2001 Apr;183(7):2343-7
pubmed: 11244076
J Struct Biol. 2006 Nov;156(2):262-72
pubmed: 16879983
Biochimie. 2010 Dec;92(12):1715-21
pubmed: 20615449
Mol Gen Genet. 1992 Jan;231(2):201-11
pubmed: 1310520
Nucleic Acids Res. 2012 Apr;40(8):3316-28
pubmed: 22187157
J Phys Chem B. 2014 Feb 6;118(5):1256-62
pubmed: 24456048
Front Microbiol. 2015 May 21;6:497
pubmed: 26052320
Soft Matter. 2018 Sep 19;14(36):7368-7381
pubmed: 30204212
Curr Opin Cell Biol. 2012 Feb;24(1):14-23
pubmed: 22245706
J Phys Condens Matter. 2015 Sep 30;27(38):383001
pubmed: 26345139
Biophys J. 2013 Jul 2;105(1):172-81
pubmed: 23823236
Mol Cell. 2009 Dec 25;36(6):932-41
pubmed: 20064460
J Chem Phys. 2006 Jul 7;125(1):014905
pubmed: 16863331
Proc Natl Acad Sci U S A. 1971 Jan;68(1):6-9
pubmed: 4924971
Nucleic Acids Res. 2013 Jan 7;41(1):315-26
pubmed: 23093594
Nucleic Acids Res. 2018 Jun 20;46(11):5525-5546
pubmed: 29718386
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15728-32
pubmed: 20798056
J Bacteriol. 1999 Oct;181(20):6361-70
pubmed: 10515926
J Bacteriol. 2009 Jul;191(13):4180-5
pubmed: 19395497
Phys Rev Lett. 2010 Sep 17;105(12):128302
pubmed: 20867679
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5237-45
pubmed: 26351690
Nat Struct Biol. 2003 Mar;10(3):212-8
pubmed: 12592399
Biochem J. 2005 Oct 15;391(Pt 2):203-13
pubmed: 15966862
Microorganisms. 2019 Jul 19;7(7):
pubmed: 31331025
J Struct Biol. 2014 Mar;185(3):243-9
pubmed: 24473063
Annu Rev Cell Dev Biol. 2014;30:39-58
pubmed: 25288112
Mol Microbiol. 2012 Jul;85(1):21-38
pubmed: 22624875
Mol Microbiol. 2000 May;36(4):962-72
pubmed: 10844682
J Phys Chem B. 2017 Jul 6;121(26):6351-6358
pubmed: 28599107
Phys Rev Lett. 2010 Apr 23;104(16):165701
pubmed: 20482065
J Struct Biol. 2001 Oct;136(1):53-66
pubmed: 11858707
J Biol Chem. 2002 Nov 1;277(44):41657-66
pubmed: 12200432
EMBO J. 1997 Apr 1;16(7):1795-805
pubmed: 9130723
Science. 2003 Aug 8;301(5634):780-5
pubmed: 12907786
J Struct Biol. 2006 Nov;156(2):255-61
pubmed: 16697220
Mol Biol Rep. 2002;29(1-2):79-82
pubmed: 12241080
Mol Microbiol. 2014 Nov;94(4):871-87
pubmed: 25250841
Nucleic Acids Res. 1984 Jul 11;12(13):5321-40
pubmed: 6379600
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4390-9
pubmed: 26224838
Mol Microbiol. 2012 Dec;86(6):1318-33
pubmed: 23078205
Front Microbiol. 2015 Jul 02;6:636
pubmed: 26191045
Biochim Biophys Acta. 2014 Feb;1844(2):339-45
pubmed: 24275506
FEBS Lett. 1995 Feb 27;360(2):125-31
pubmed: 7875316
Cell. 2013 May 9;153(4):882-95
pubmed: 23623305
Crit Rev Biochem Mol Biol. 2008 Nov-Dec;43(6):393-418
pubmed: 19037758
Genes Cells. 2000 Aug;5(8):613-26
pubmed: 10947847
Rep Prog Phys. 2012 Jul;75(7):076602
pubmed: 22790781
Biophys J. 2021 Jan 19;120(2):370-378
pubmed: 33340542
Biophys J. 2020 May 5;118(9):2141-2150
pubmed: 31629479
Open Biol. 2019 Dec;9(12):190223
pubmed: 31795918