Neuron arbor geometry is sensitive to the limited-range fractal properties of their dendrites.
confocal microscopy
connectivity
fractal analysis
fractal dimension (D)
hippocampal CA1
neuromorphology
neurons
tortuosity
Journal
Frontiers in network physiology
ISSN: 2674-0109
Titre abrégé: Front Netw Physiol
Pays: Switzerland
ID NLM: 9918334487406676
Informations de publication
Date de publication:
2023
2023
Historique:
received:
18
10
2022
accepted:
10
01
2023
entrez:
17
3
2023
pubmed:
18
3
2023
medline:
18
3
2023
Statut:
epublish
Résumé
Fractal geometry is a well-known model for capturing the multi-scaled complexity of many natural objects. By analyzing three-dimensional images of pyramidal neurons in the rat hippocampus CA1 region, we examine how the individual dendrites within the neuron arbor relate to the fractal properties of the arbor as a whole. We find that the dendrites reveal unexpectedly mild fractal characteristics quantified by a low fractal dimension. This is confirmed by comparing two fractal methods-a traditional "coastline" method and a novel method that examines the dendrites' tortuosity across multiple scales. This comparison also allows the dendrites' fractal geometry to be related to more traditional measures of their complexity. In contrast, the arbor's fractal characteristics are quantified by a much higher fractal dimension. Employing distorted neuron models that modify the dendritic patterns, deviations from natural dendrite behavior are found to induce large systematic changes in the arbor's structure and its connectivity within a neural network. We discuss how this sensitivity to dendrite fractality impacts neuron functionality in terms of balancing neuron connectivity with its operating costs. We also consider implications for applications focusing on deviations from natural behavior, including pathological conditions and investigations of neuron interactions with artificial surfaces in human implants.
Identifiants
pubmed: 36926542
doi: 10.3389/fnetp.2023.1072815
pii: 1072815
pmc: PMC10013056
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1072815Informations de copyright
Copyright © 2023 Rowland, Smith, Moslehi, Harland, Dalrymple-Alford and Taylor.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Int Arch Med. 2014 Feb 17;7(1):6
pubmed: 24529393
J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45
pubmed: 11598490
Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006189
pubmed: 22229116
J Neurophysiol. 2008 May;99(5):2320-8
pubmed: 18305091
Science. 1967 May 5;156(3775):636-8
pubmed: 17837158
IEEE Trans Med Imaging. 2003 Sep;22(9):1163-71
pubmed: 12956271
Nat Rev Clin Oncol. 2015 Nov;12(11):664-75
pubmed: 26169924
Comput Intell Neurosci. 2020 Jan 29;2020:4041832
pubmed: 32405294
Ecol Evol. 2019 May 26;9(12):7134-7142
pubmed: 31380038
Front Physiol. 2022 Jun 23;13:932598
pubmed: 35812343
Brain Res Bull. 2014 Apr;103:18-28
pubmed: 24333192
Sci Rep. 2021 Jan 27;11(1):2332
pubmed: 33504818
PLoS Comput Biol. 2010 Aug 26;6(8):
pubmed: 20865052
Biofabrication. 2017 May 31;9(2):025024
pubmed: 28485302
Biomaterials. 2013 Jan;34(4):875-87
pubmed: 23131535
J Neurosci Methods. 1995 Feb;56(2):133-44
pubmed: 7752679
J Neurosci. 2007 Aug 29;27(35):9247-51
pubmed: 17728438
Experientia. 1990 Mar 15;46(3):251-4
pubmed: 2311717
Microvasc Res. 2014 Jan;91:99-109
pubmed: 24291593
PLoS One. 2022 Apr 6;17(4):e0265685
pubmed: 35385490
Int J Med Inform. 1999 Feb-Mar;53(2-3):239-52
pubmed: 10193892
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12536-41
pubmed: 19622738
Nanotechnology. 2010 Jun 11;21(23):235102
pubmed: 20463384