Message Passing Neural Networks Improve Prediction of Metabolite Authenticity.
Journal
Journal of chemical information and modeling
ISSN: 1549-960X
Titre abrégé: J Chem Inf Model
Pays: United States
ID NLM: 101230060
Informations de publication
Date de publication:
27 03 2023
27 03 2023
Historique:
pmc-release:
27
03
2024
medline:
28
3
2023
pubmed:
18
3
2023
entrez:
17
3
2023
Statut:
ppublish
Résumé
Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule's network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation.
Identifiants
pubmed: 36926871
doi: 10.1021/acs.jcim.2c01383
pmc: PMC10348819
mid: NIHMS1909068
doi:
Substances chimiques
Terbinafine
G7RIW8S0XP
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1675-1694Subventions
Organisme : NIH HHS
ID : S10 OD018091
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM140635
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR022984
Pays : United States
Organisme : NLM NIH HHS
ID : R01 LM012222
Pays : United States
Organisme : NLM NIH HHS
ID : R01 LM012482
Pays : United States
Références
Clin Pharmacokinet. 1998 Oct;35(4):247-74
pubmed: 9812177
Drug Metab Dispos. 2012 Nov;40(11):2185-91
pubmed: 22908203
Drug Metab Dispos. 2005 Jan;33(1):83-93
pubmed: 15502007
Anal Biochem. 2006 Apr 15;351(2):266-72
pubmed: 16473319
J Chem Inf Model. 2020 Mar 23;60(3):1146-1164
pubmed: 32040319
Br J Clin Pharmacol. 1999 Oct;48(4):513-20
pubmed: 10583021
PLoS One. 2019 Mar 20;14(3):e0213857
pubmed: 30893375
J Mass Spectrom. 2006 Sep;41(9):1121-39
pubmed: 16967439
Handb Exp Pharmacol. 2010;(196):165-94
pubmed: 20020263
Toxicol Rep. 2018 Aug 31;5:943-953
pubmed: 30258789
Chem Res Toxicol. 2011 Sep 19;24(9):1345-410
pubmed: 21702456
Chem Res Toxicol. 2019 Jun 17;32(6):1151-1164
pubmed: 30925039
Front Chem. 2019 Jun 12;7:402
pubmed: 31249827
Comb Chem High Throughput Screen. 2010 Feb;13(2):188-206
pubmed: 20053163
Nat Rev Drug Discov. 2013 Aug;12(8):569
pubmed: 23903212
ACS Cent Sci. 2016 Aug 24;2(8):529-37
pubmed: 27610414
Cancer. 1950 Jan;3(1):32-5
pubmed: 15405679
Forensic Sci Int. 2002 Aug 28;128(3):146-54
pubmed: 12175795
Chem Res Toxicol. 2012 Mar 19;25(3):532-42
pubmed: 22372867
PLoS One. 2019 Jan 24;14(1):e0209264
pubmed: 30677025
J Chem Inf Model. 2020 Oct 26;60(10):4702-4716
pubmed: 32881497
J Chem Inf Model. 2020 Jul 27;60(7):3431-3449
pubmed: 32525671
Curr Drug Metab. 2006 Oct;7(7):715-27
pubmed: 17073576
Curr Drug Metab. 2005 Jun;6(3):161-225
pubmed: 15975040
ChemMedChem. 2008 May;3(5):821-32
pubmed: 18311745
Chem Res Toxicol. 2018 Feb 19;31(2):68-80
pubmed: 29355304
J Cheminform. 2019 Jan 5;11(1):2
pubmed: 30612223
Chem Res Toxicol. 2010 Nov 15;23(11):1691-700
pubmed: 20939553
Biochem Pharmacol. 2019 Dec;170:113661
pubmed: 31605674
Drug Discov Today. 2012 Jun;17(11-12):549-60
pubmed: 22305937
Drug Metab Dispos. 2005 Jun;33(6):706-13
pubmed: 15764717