Broadband Transient Response and Wavelength-Tunable Photoacoustics in Plasmonic Hetero-nanoparticles.
Plasmonics
nanoparticles
optical nonlinearities
opto-acoustics
Journal
Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070
Informations de publication
Date de publication:
12 Apr 2023
12 Apr 2023
Historique:
medline:
18
3
2023
pubmed:
18
3
2023
entrez:
17
3
2023
Statut:
ppublish
Résumé
The optically driven acoustic modes and nonlinear response of plasmonic nanoparticles are important in many applications, but are strongly resonant, which restricts their excitation to predefined wavelengths. Here, we demonstrate that multilayered spherical plasmonic hetero-nanoparticles, formed by alternating layers of gold and silica, provide a platform for a broadband nonlinear optical response from visible to near-infrared wavelengths. They also act as a tunable optomechanical system with mechanically decoupled layers in which different acoustic modes can be selectively switched on/off by tuning the excitation wavelength. These observations not only expand the knowledge about the internal structure of composite plasmonic nanoparticles but also allow for an additional degree of freedom for controlling their nonlinear optical and mechanical properties.
Identifiants
pubmed: 36926927
doi: 10.1021/acs.nanolett.3c00063
pmc: PMC10103169
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2786-2791Références
Adv Sci (Weinh). 2019 Nov 27;7(2):1902408
pubmed: 31993295
Nat Commun. 2014 Sep 02;5:4792
pubmed: 25178269
Nat Commun. 2014 Jun 04;5:4042
pubmed: 24893773
Chem Rev. 2011 Jun 8;111(6):3828-57
pubmed: 21648956
Nano Lett. 2014 May 14;14(5):2926-33
pubmed: 24738706
J Am Chem Soc. 2006 Feb 15;128(6):2115-20
pubmed: 16464114
Nat Mater. 2010 Mar;9(3):205-13
pubmed: 20168344
Nano Lett. 2007 Jan;7(1):138-42
pubmed: 17212453
Nat Mater. 2009 Nov;8(11):867-71
pubmed: 19820701
Ultrasonics. 2015 Feb;56:98-108
pubmed: 24656934
Acc Chem Res. 2019 Sep 17;52(9):2525-2535
pubmed: 31430119
ACS Nano. 2021 Apr 27;15(4):6276-6288
pubmed: 33621047
Adv Mater. 2013 Apr 24;25(16):2351-6
pubmed: 23450522
Nano Lett. 2015 Oct 14;15(10):6419-28
pubmed: 26375710
ACS Nano. 2017 Sep 26;11(9):9360-9369
pubmed: 28817767
ACS Nano. 2014 Jun 24;8(6):6372-81
pubmed: 24889266
Nat Nanotechnol. 2009 Aug;4(8):492-5
pubmed: 19662009
J Phys Chem B. 2007 Jun 28;111(25):7457-61
pubmed: 17547453
Nat Commun. 2015 Jul 21;6:7757
pubmed: 26195182
Acc Chem Res. 2019 Nov 19;52(11):3018-3028
pubmed: 31680511
Nano Lett. 2018 Feb 14;18(2):1124-1129
pubmed: 29314852
Nat Commun. 2019 Jul 4;10(1):2967
pubmed: 31273210
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11621-11626
pubmed: 29078373
J Phys Chem Lett. 2017 May 4;8(9):2060-2067
pubmed: 28427261
Opt Express. 2018 Jun 25;26(13):17322-17334
pubmed: 30119545
Science. 2003 Oct 17;302(5644):419-22
pubmed: 14564001
Nano Lett. 2012 Feb 8;12(2):1063-9
pubmed: 22251064
Laser Photon Rev. 2021 Mar;15(3):2000346
pubmed: 34484456
Nano Lett. 2011 Jul 13;11(7):3016-21
pubmed: 21688851