Risk exposure factors influencing the frequency of road crashes during the COVID-19 pandemic in Ciudad Juarez, Mexico. A negative binomial spatial regression model.


Journal

International journal of injury control and safety promotion
ISSN: 1745-7319
Titre abrégé: Int J Inj Contr Saf Promot
Pays: England
ID NLM: 101247254

Informations de publication

Date de publication:
Sep 2023
Historique:
medline: 31 8 2023
pubmed: 18 3 2023
entrez: 17 3 2023
Statut: ppublish

Résumé

The article aims to investigate the influence of risk exposure factors on the frequency of road crashes from January to August 2020 in Ciudad Juarez, Mexico. It is a longitudinal study with four data sets: road crashes, population and housing census, location of economic activities, and road network information. Specifically, this study investigates the relationship between exposure factors - demographics, main roads and land use - and road crashes. A mixed method analysis was employed, (1) spatial analysis using GIS techniques; and (2) a negative binomial spatial regression model. The results showed a strong spatial dependence (0.274;

Identifiants

pubmed: 36927303
doi: 10.1080/17457300.2023.2188469
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

362-374

Auteurs

Vladimir Hernández (V)

Architecture Department, Universidad Autonoma de Ciudad Juarez, Ciudad Juarez, Mexico.

César M Fuentes (CM)

Urban and Environmental Studies Department, El Colegio de la Frontera Norte, Ciudad Juarez, Mexico.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH