Pathways link environmental and genetic factors with structural brain networks and psychopathology in youth.
Journal
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
13
10
2022
accepted:
22
02
2023
revised:
21
02
2023
pmc-release:
01
06
2024
medline:
26
5
2023
pubmed:
18
3
2023
entrez:
17
3
2023
Statut:
ppublish
Résumé
Adolescence is a period of significant brain development and maturation, and it is a time when many mental health problems first emerge. This study aimed to explore a comprehensive map that describes possible pathways from genetic and environmental risks to structural brain organization and psychopathology in adolescents. We included 32 environmental items on developmental adversity, maternal substance use, parental psychopathology, socioeconomic status (SES), school and family environment; 10 child psychopathological scales; polygenic risk scores (PRS) for 10 psychiatric disorders, total problems, and cognitive ability; and structural brain networks in the Adolescent Brain Cognitive Development study (ABCD, n = 9168). Structural equation modeling found two pathways linking SES, brain, and psychopathology. Lower SES was found to be associated with lower structural connectivity in the posterior default mode network and greater salience structural connectivity, and with more severe psychosis and internalizing in youth (p < 0.001). Prematurity and birth weight were associated with early-developed sensorimotor and subcortical networks (p < 0.001). Increased parental psychopathology, decreased SES and school engagement was related to elevated family conflict, psychosis, and externalizing behaviors in youth (p < 0.001). Increased maternal substance use predicted increased developmental adversity, internalizing, and psychosis (p < 0.001). But, polygenic risks for psychiatric disorders had moderate effects on brain structural connectivity and psychopathology in youth. These findings suggest that a range of genetic and environmental factors can influence brain structural organization and psychopathology during adolescence, and that addressing these risk factors may be important for promoting positive mental health outcomes in young people.
Identifiants
pubmed: 36928354
doi: 10.1038/s41386-023-01559-7
pii: 10.1038/s41386-023-01559-7
pmc: PMC10209108
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1042-1051Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2023. The Author(s), under exclusive licence to American College of Neuropsychopharmacology.
Références
Solmi M, Radua J, Olivola M, Croce E, Soardo L, Salazar de Pablo G, et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry. 2022;27:281–95.
pubmed: 34079068
doi: 10.1038/s41380-021-01161-7
Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, et al. Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA. 2007;104:13507–12.
pubmed: 17679691
pmcid: 1940033
doi: 10.1073/pnas.0705843104
Grayson DS, Fair DA. Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature. Neuroimage. 2017;160:15–31.
pubmed: 28161313
doi: 10.1016/j.neuroimage.2017.01.079
Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb Cortex. 1996;6:551–60.
pubmed: 8670681
doi: 10.1093/cercor/6.4.551
Sowell ER, Trauner DA, Gamst A, Jernigan TL. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol. 2002;44:4–16.
pubmed: 11811649
doi: 10.1017/S0012162201001591
Seehaus A, Roebroeck A, Bastiani M, Fonseca L, Bratzke H, Lori N, et al. Histological validation of high-resolution DTI in human post mortem tissue. Front Neuroanat. 2015;9:98.
pubmed: 26257612
pmcid: 4511840
doi: 10.3389/fnana.2015.00098
Markham JA, Greenough WT. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 2004;1:351–63.
pubmed: 16921405
pmcid: 1550735
doi: 10.1017/S1740925X05000219
Asato MR, Terwilliger R, Woo J, Luna B. White matter development in adolescence: a DTI study. Cereb Cortex. 2010;20:2122–31.
pubmed: 20051363
pmcid: 2923214
doi: 10.1093/cercor/bhp282
Kipping JA, Tuan TA, Fortier MV, Qiu A. Asynchronous development of cerebellar, cerebello-cortical, and cortico-cortical functional networks in infancy, childhood, and adulthood. Cereb Cortex. 2017;27:5170–84.
pubmed: 27733542
Qiu A, Rifkin-Graboi A, Zhong J, Phua DY, Lai YK, Meaney MJ. Birth weight and gestation influence striatal morphology and motor response in normal six-year-old boys. Neuroimage 2012;59:1065–70.
pubmed: 21963914
doi: 10.1016/j.neuroimage.2011.09.032
Cheong JL, Anderson P, Roberts G, Duff J, Doyle LW, Victorian Infant Collaborative Study G. Postnatal corticosteroids and neurodevelopmental outcomes in extremely low birthweight or extremely preterm infants: 15-year experience in Victoria, Australia. Arch Dis Child Fetal Neonatal Ed. 2013;98:F32–6.
pubmed: 22684163
doi: 10.1136/fetalneonatal-2011-301355
Thompson DK, Matthews LG, Alexander B, Lee KJ, Kelly CE, Adamson CL, et al. Tracking regional brain growth up to age 13 in children born term and very preterm. Nat Commun. 2020;11:696.
pubmed: 32019924
pmcid: 7000691
doi: 10.1038/s41467-020-14334-9
Zhang H, Lee ZX, White T, Qiu A. Parental and social factors in relation to child psychopathology, behavior, and cognitive function. Transl Psychiatry. 2020;10:80.
pubmed: 32102994
pmcid: 7044210
doi: 10.1038/s41398-020-0761-6
Zhang H, Wong TY, Broekman BFP, Chong YS, Shek LP, Gluckman PD, et al. Maternal adverse childhood experience and depression in relation with brain network development and behaviors in children: a longitudinal study. Cereb Cortex. 2021;31:4233–44.
pubmed: 33825872
doi: 10.1093/cercor/bhab081
Wen DJ, Poh JS, Ni SN, Chong YS, Chen H, Kwek K, et al. Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children. Transl Psychiatry. 2017;7:e1103.
pubmed: 28440816
pmcid: 5416711
doi: 10.1038/tp.2017.74
Rifkin-Graboi A, Bai J, Chen H, Hameed WB, Sim LW, Tint MT, et al. Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. Biol Psychiatry. 2013;74:837–44.
pubmed: 23968960
doi: 10.1016/j.biopsych.2013.06.019
Qiu A, Anh TT, Li Y, Chen H, Rifkin-Graboi A, Broekman BF, et al. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Transl Psychiatry. 2015;5:e508.
pubmed: 25689569
pmcid: 4445753
doi: 10.1038/tp.2015.3
Hur JW, Choi SH, Yun JY, Chon MW, Kwon JS. Parental socioeconomic status and prognosis in individuals with ultra-high risk for psychosis: A 2-year follow-up study. Schizophr Res. 2015;168:56–61.
pubmed: 26213342
doi: 10.1016/j.schres.2015.07.020
Anton MT, Jones DJ, Youngstrom EA. Socioeconomic status, parenting, and externalizing problems in African American single-mother homes: a person-oriented approach. J Fam Psychol. 2015;29:405–15.
pubmed: 26053349
pmcid: 4913275
doi: 10.1037/fam0000086
Tooley UA, Mackey AP, Ciric R, Ruparel K, Moore TM, Gur RC, et al. Associations between neighborhood ses and functional brain network development. Cereb Cortex. 2020;30:1–19.
pubmed: 31220218
doi: 10.1093/cercor/bhz066
Sripada C, Angstadt M, Taxali A, Clark DA, Greathouse T, Rutherford S, et al. Brain-wide functional connectivity patterns support general cognitive ability and mediate effects of socioeconomic status in youth. Transl Psychiatry. 2021;11:571.
pubmed: 34750359
pmcid: 8575890
doi: 10.1038/s41398-021-01704-0
Rakesh D, Cropley V, Zalesky A, Vijayakumar N, Allen NB, Whittle S. Neighborhood disadvantage and longitudinal brain-predicted-age trajectory during adolescence. Dev Cogn Neurosci. 2021;51:101002.
pubmed: 34411954
pmcid: 8377545
doi: 10.1016/j.dcn.2021.101002
Gong W, Rolls ET, Du J, Feng J, Cheng W. Brain structure is linked to the association between family environment and behavioral problems in children in the ABCD study. Nat Commun. 2021;12:3769.
pubmed: 34145259
pmcid: 8213719
doi: 10.1038/s41467-021-23994-0
Garavan H, Bartsch H, Conway K, Decastro A, Goldstein RZ, Heeringa S, et al. Recruiting the ABCD sample: Design considerations and procedures. Dev Cogn Neurosci. 2018;32:16–22.
pubmed: 29703560
pmcid: 6314286
doi: 10.1016/j.dcn.2018.04.004
Lubke GH, Hottenga JJ, Walters R, Laurin C, de Geus EJ, Willemsen G, et al. Estimating the genetic variance of major depressive disorder due to all single nucleotide polymorphisms. Biol Psychiatry. 2012;72:707–9.
pubmed: 22520966
pmcid: 3404250
doi: 10.1016/j.biopsych.2012.03.011
Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 2013;18:497–511.
pubmed: 22472876
doi: 10.1038/mp.2012.21
MacNeill LA, Allen NB, Poleon RB, Vargas T, Osborne KJ, Damme KSF, et al. Translating RDoC to real-world impact in developmental psychopathology: a neurodevelopmental framework for application of mental health risk calculators. Dev Psychopathol. 2021;33:1665–84.
pubmed: 35095215
pmcid: 8794223
doi: 10.1017/S0954579421000651
Barch DM, Albaugh MD, Avenevoli S, Chang L, Clark DB, Glantz MD, et al. Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description. Dev Cogn Neurosci. 2018;32:55–66.
pubmed: 29113758
doi: 10.1016/j.dcn.2017.10.010
Clark DB, Fisher CB, Bookheimer S, Brown SA, Evans JH, Hopfer C, et al. Biomedical ethics and clinical oversight in multisite observational neuroimaging studies with children and adolescents: The ABCD experience. Dev Cogn Neurosci. 2018;32:143–54.
pubmed: 28716389
doi: 10.1016/j.dcn.2017.06.005
Karcher NR, Barch DM. The ABCD study: understanding the development of risk for mental and physical health outcomes. Neuropsychopharmacology 2021;46:131–42.
pubmed: 32541809
doi: 10.1038/s41386-020-0736-6
Bogner JA, Whiteneck GG, MacDonald J, Juengst SB, Brown AW, Philippus AM, et al. Test-retest reliability of traumatic brain injury outcome measures: a traumatic brain injury model systems study. J Head Trauma Rehabil. 2017;32:E1–E16.
pubmed: 28195954
doi: 10.1097/HTR.0000000000000291
Achenbach TM. International findings with the Achenbach System of Empirically Based Assessment (ASEBA): applications to clinical services, research, and training. Child Adolesc Psychiatry Ment Health. 2019;13:30.
pubmed: 31312253
pmcid: 6610912
doi: 10.1186/s13034-019-0291-2
Rice JP, Reich T, Bucholz KK, Neuman RJ, Fishman R, Rochberg N, et al. Comparison of direct interview and family history diagnoses of alcohol dependence. Alcohol Clin Exp Res. 1995;19:1018–23.
pubmed: 7485811
doi: 10.1111/j.1530-0277.1995.tb00983.x
Hamilton CM, Strader LC, Pratt JG, Maiese D, Hendershot T, Kwok RK, et al. The PhenX Toolkit: get the most from your measures. Am J Epidemiol. 2011;174:253–60.
pubmed: 21749974
pmcid: 3141081
doi: 10.1093/aje/kwr193
Kind AJ, Jencks S, Brock J, Yu M, Bartels C, Ehlenbach W, et al. Neighborhood socioeconomic disadvantage and 30-day rehospitalization: a retrospective cohort study. Ann Intern Med. 2014;161:765–74.
pubmed: 25437404
pmcid: 4251560
doi: 10.7326/M13-2946
Echeverria SE, Diez-Roux AV, Link BG. Reliability of self-reported neighborhood characteristics. J Urban Health. 2004;81:682–701.
pubmed: 15466849
pmcid: 3455923
doi: 10.1093/jurban/jth151
Stover PJ, Harlan WR, Hammond JA, Hendershot T, Hamilton CM. PhenX: a toolkit for interdisciplinary genetics research. Curr Opin Lipido. 2010;21:136–40.
doi: 10.1097/MOL.0b013e3283377395
Chilcoat HD, Anthony JC. Impact of parent monitoring on initiation of drug use through late childhood. J Am Acad Child Adolesc Psychiatry. 1996;35:91–100.
pubmed: 8567618
doi: 10.1097/00004583-199601000-00017
Schaefer ES. A configurational analysis of children’s reports of parent behavior. J Consult Psychol. 1965;29:552–7.
pubmed: 5846126
doi: 10.1037/h0022702
Moos RH, Moos BS Family Environment Scale manual. Consulting Psychologists Press: Palo Alto, CA; 1986.
Goodman R, Meltzer H, Bailey V. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Eur Child Adolesc Psychiatry. 1998;7:125–30.
pubmed: 9826298
doi: 10.1007/s007870050057
Youngstrom EA, Frazier TW, Demeter C, Calabrese JR, Findling RL. Developing a 10-item mania scale from the Parent General Behavior Inventory for children and adolescents. J Clin Psychiatry. 2008;69:831–9.
pubmed: 18452343
pmcid: 2777983
doi: 10.4088/JCP.v69n0517
Loewy RL, Therman S, Manninen M, Huttunen MO, Cannon TD. Prodromal psychosis screening in adolescent psychiatry clinics. Early Inter Psychiatry. 2012;6:69–75.
doi: 10.1111/j.1751-7893.2011.00286.x
Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018;32:43–54.
pubmed: 29567376
pmcid: 5999559
doi: 10.1016/j.dcn.2018.03.001
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.
pubmed: 11832223
doi: 10.1016/S0896-6273(02)00569-X
Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage 2016;142:394–406.
pubmed: 27523449
doi: 10.1016/j.neuroimage.2016.08.016
Andersson JLR, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani M. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement. Neuroimage. 2017;152:450–66.
pubmed: 28284799
doi: 10.1016/j.neuroimage.2017.02.085
Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage. 2016;141:556–72.
pubmed: 27393418
doi: 10.1016/j.neuroimage.2016.06.058
Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–78.
pubmed: 26481672
doi: 10.1016/j.neuroimage.2015.10.019
Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.
pubmed: 20378467
pmcid: 3071855
doi: 10.1109/TMI.2010.2046908
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–41.
pubmed: 12377157
doi: 10.1006/nimg.2002.1132
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.
pubmed: 11516708
doi: 10.1016/S1361-8415(01)00036-6
Du J, Hosseinbor AP, Chung MK, Bendlin BB, Suryawanshi G, Alexander AL, et al. Diffeomorphic metric mapping and probabilistic atlas generation of hybrid diffusion imaging based on BFOR signal basis. Med Image Anal. 2014;18:1002–14.
pubmed: 24972378
pmcid: 4321828
doi: 10.1016/j.media.2014.05.011
Du J, Goh A, Qiu A. Diffeomorphic metric mapping of high angular resolution diffusion imaging based on Riemannian structure of orientation distribution functions. IEEE Trans Med Imaging. 2012;31:1021–33.
pubmed: 22156979
doi: 10.1109/TMI.2011.2178253
Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 2008;40:570–82.
pubmed: 18255316
doi: 10.1016/j.neuroimage.2007.12.035
Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM, Papademetris X, et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat Protoc. 2017;12:506–18.
pubmed: 28182017
pmcid: 5526681
doi: 10.1038/nprot.2016.178
Baum GL, Cui Z, Roalf DR, Ciric R, Betzel RF, Larsen B, et al. Development of structure–function coupling in human brain networks during youth. Proc Natl Acad Sci USA. 2020;117:771–78.
pubmed: 31874926
doi: 10.1073/pnas.1912034117
Zhu J, Qiu A. Interindividual variability in functional connectivity discovers differential development of cognition and transdiagnostic dimensions of psychopathology in youth. Neuroimage. 2022;260:119482.
pubmed: 35842101
doi: 10.1016/j.neuroimage.2022.119482
Baurley JW, Edlund CK, Pardamean CI, Conti DV, Bergen AW. Smokescreen: a targeted genotyping array for addiction research. BMC Genomics. 2016;17:145.
pubmed: 26921259
pmcid: 4769529
doi: 10.1186/s12864-016-2495-7
Krishnan K, Wang BS, Lu J, Wang L, Maffei A, Cang J, et al. MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex. Proc Natl Acad Sci USA. 2015;112:E4782–91.
pubmed: 26261347
pmcid: 4553776
doi: 10.1073/pnas.1506499112
Peyrot WJ, Milaneschi Y, Abdellaoui A, Sullivan PF, Hottenga JJ, Boomsma DI, et al. Effect of polygenic risk scores on depression in childhood trauma. Br J Psychiatry. 2014;205:113–9.
pubmed: 24925986
pmcid: 4118052
doi: 10.1192/bjp.bp.113.143081
Holmes AJ, Lee PH, Hollinshead MO, Bakst L, Roffman JL, Smoller JW, et al. Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. J Neurosci. 2012;32:18087–100.
pubmed: 23238724
pmcid: 3674506
doi: 10.1523/JNEUROSCI.2531-12.2012
Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009;460:748–52.
pubmed: 19571811
doi: 10.1038/nature08185
Fan X, Thompson B, Wang L. Effects of sample size, estimation method, and model specification on structural equation modeling fit indexes. Struct Equ Model. 1999;6:56–83.
doi: 10.1080/10705519909540119
Rakesh D, Zalesky A, Whittle S. Similar but distinct - Effects of different socioeconomic indicators on resting state functional connectivity: Findings from the Adolescent Brain Cognitive Development (ABCD) Study(R). Dev Cogn Neurosci. 2021;51:101005.
pubmed: 34419766
pmcid: 8379618
doi: 10.1016/j.dcn.2021.101005
Moore TM, Martin IK, Gur OM, Jackson CT, Scott JC, Calkins ME, et al. Characterizing social environment’s association with neurocognition using census and crime data linked to the Philadelphia Neurodevelopmental Cohort. Psychol Med. 2016;46:599–610.
pubmed: 26492931
doi: 10.1017/S0033291715002111
Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100:253–8.
pubmed: 12506194
doi: 10.1073/pnas.0135058100
Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.
pubmed: 17329432
pmcid: 2680293
doi: 10.1523/JNEUROSCI.5587-06.2007
Xia CH, Ma Z, Ciric R, Gu S, Betzel RF, Kaczkurkin AN, et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat Commun. 2018;9:3003.
pubmed: 30068943
pmcid: 6070480
doi: 10.1038/s41467-018-05317-y
Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry. 2015;72:305–15.
pubmed: 25651064
pmcid: 4791058
doi: 10.1001/jamapsychiatry.2014.2206
Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.
pubmed: 21908230
doi: 10.1016/j.tics.2011.08.003
Wehrle FM, Michels L, Guggenberger R, Huber R, Latal B, O’Gorman RL, et al. Altered resting-state functional connectivity in children and adolescents born very preterm short title. Neuroimage Clin. 2018;20:1148–56.
pubmed: 30388598
pmcid: 6214877
doi: 10.1016/j.nicl.2018.10.002
Cheong JL, Anderson PJ, Roberts G, Burnett AC, Lee KJ, Thompson DK, et al. Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents. PLoS One. 2013;8:e77475.
pubmed: 24130887
pmcid: 3793949
doi: 10.1371/journal.pone.0077475
Rakesh D, Zalesky A, Whittle S. The role of school environment in brain structure, connectivity, and mental health in children: a multimodal investigation. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:32–41.
Judd N, Sauce B, Wiedenhoeft J, Tromp J, Chaarani B, Schliep A, et al. Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. Proc Natl Acad Sci USA. 2020;117:12411–18.
pubmed: 32430323
pmcid: 7275733
doi: 10.1073/pnas.2001228117
Sripada RK, Swain JE, Evans GW, Welsh RC, Liberzon I. Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network. Neuropsychopharmacology. 2014;39:2244–51.
pubmed: 24675708
pmcid: 4104343
doi: 10.1038/npp.2014.75
Monteiro JM, Rao A, Shawe-Taylor J, Mourão-Miranda J. A multiple hold-out framework for sparse partial least squares. J Neurosci Methods. 2016;271:182–94.
pubmed: 27353722
pmcid: 5012894
doi: 10.1016/j.jneumeth.2016.06.011