Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
16 03 2023
16 03 2023
Historique:
received:
29
08
2022
accepted:
07
03
2023
entrez:
17
3
2023
pubmed:
18
3
2023
medline:
22
3
2023
Statut:
epublish
Résumé
The transmembrane voltage gradient is a general physico-chemical cue that regulates diverse biological function through voltage-gated ion channels. How voltage sensing mediates ion flows remains unknown at the molecular level. Here, we report six conformations of the human Eag2 (hEag2) ranging from closed, pre-open, open, and pore dilation but non-conducting states captured by cryo-electron microscopy (cryo-EM). These multiple states illuminate dynamics of the selectivity filter and ion permeation pathway with delayed rectifier properties and Cole-Moore effect at the atomic level. Mechanistically, a short S4-S5 linker is coupled with the constrict sites to mediate voltage transducing in a non-domain-swapped configuration, resulting transitions for constrict sites of F464 and Q472 from gating to open state stabilizing for voltage energy transduction. Meanwhile, an additional potassium ion occupied at positions S6 confers the delayed rectifier property and Cole-Moore effects. These results provide insight into voltage transducing and potassium current across membrane, and shed light on the long-sought Cole-Moore effects.
Identifiants
pubmed: 36928654
doi: 10.1038/s41467-023-37204-6
pii: 10.1038/s41467-023-37204-6
pmc: PMC10020445
doi:
Substances chimiques
Ether-A-Go-Go Potassium Channels
0
KCNH5 protein, human
0
Potassium
RWP5GA015D
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1470Informations de copyright
© 2023. The Author(s).
Références
Sci Adv. 2022 Apr 22;8(16):eabm8804
pubmed: 35452285
Genome Biol. 2003;4(3):207
pubmed: 12620097
Nat Methods. 2017 Mar;14(3):290-296
pubmed: 28165473
Science. 2005 Aug 5;309(5736):903-8
pubmed: 16002579
Nature. 2020 Jul;583(7814):145-149
pubmed: 32461693
J Physiol. 2012 Jun 1;590(11):2591-9
pubmed: 22431339
Nat Chem Biol. 2017 Apr 13;13(5):455-463
pubmed: 28406893
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6751-E6759
pubmed: 29959207
Science. 2016 Aug 12;353(6300):664-9
pubmed: 27516594
Cell. 2022 Jan 20;185(2):235-249
pubmed: 34995481
Cell. 2017 Apr 20;169(3):422-430.e10
pubmed: 28431243
Nature. 2017 Dec 21;552(7685):421-425
pubmed: 29236691
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2214151119
pubmed: 36331999
Nat Protoc. 2014 Nov;9(11):2574-85
pubmed: 25299155
Cell. 2017 Jan 12;168(1-2):111-120.e11
pubmed: 28086084
EMBO J. 1999 Oct 15;18(20):5540-7
pubmed: 10523298
Nat Protoc. 2019 Jan;14(1):100-118
pubmed: 30487656
Neuron. 2021 Apr 21;109(8):1302-1313.e4
pubmed: 33651975
Adv Protein Chem. 2003;63:211-41
pubmed: 12629972
Science. 2005 Aug 5;309(5736):897-903
pubmed: 16002581
Cell. 2019 Dec 12;179(7):1582-1589.e7
pubmed: 31787376
Nat Genet. 2015 Jan;47(1):73-7
pubmed: 25420144
Nature. 2010 Jul 8;466(7303):203-8
pubmed: 20613835
J Gen Physiol. 2011 May;137(5):397-403
pubmed: 21518828
Elife. 2019 Sep 06;8:
pubmed: 31490124
Nat Commun. 2022 May 17;13(1):2713
pubmed: 35581266
Nature. 2020 Apr;580(7802):288-293
pubmed: 32269335
Cell. 2016 Feb 25;164(5):937-49
pubmed: 26919430
Biophys J. 2015 Oct 6;109(7):1312-6
pubmed: 26445430
Sci Adv. 2021 Jan 29;7(5):
pubmed: 33514547
Nature. 2007 Nov 15;450(7168):376-82
pubmed: 18004376