Top 10 Basaloid Neoplasms of the Sinonasal Tract.

Basaloid neoplasms Differential diagnosis Head and neck Immunohistochemistry Molecular genetic Review Sinonasal tumors

Journal

Head and neck pathology
ISSN: 1936-0568
Titre abrégé: Head Neck Pathol
Pays: United States
ID NLM: 101304010

Informations de publication

Date de publication:
Mar 2023
Historique:
received: 19 10 2022
accepted: 28 10 2022
pmc-release: 16 03 2024
medline: 3 4 2023
pubmed: 18 3 2023
entrez: 17 3 2023
Statut: ppublish

Résumé

Basaloid neoplasms of the sinonasal tract represent a significant group of tumors with histological overlap but often with different etiologies (i.e., viral, genetics), clinical management, and prognostic significance. Review. "Basaloid" generally refers to cells with coarse chromatin in round nuclei and sparse cytoplasm, resembling cells of epithelial basal layers or imparting an "immature" appearance. Tumors with this characteristic in the sinonasal tract are represented by a spectrum of benign to high-grade malignant neoplasms, such as adenoid cystic carcinoma, NUT carcinoma, sinonasal undifferentiated carcinoma, SWI/SNF complex-deficient carcinomas, and adamantinoma-like Ewing sarcoma. In some instances, histology alone may be sufficient for diagnosis. However, limited biopsy material or fine-needle aspiration specimens may be particularly challenging. Therefore, often other diagnostic procedures, including a combination of histology, immunohistochemistry (IHC), DNA and RNA testing, and molecular genetics are necessary to establish an accurate diagnosis.

Sections du résumé

BACKGROUND BACKGROUND
Basaloid neoplasms of the sinonasal tract represent a significant group of tumors with histological overlap but often with different etiologies (i.e., viral, genetics), clinical management, and prognostic significance.
METHODS METHODS
Review.
RESULTS RESULTS
"Basaloid" generally refers to cells with coarse chromatin in round nuclei and sparse cytoplasm, resembling cells of epithelial basal layers or imparting an "immature" appearance. Tumors with this characteristic in the sinonasal tract are represented by a spectrum of benign to high-grade malignant neoplasms, such as adenoid cystic carcinoma, NUT carcinoma, sinonasal undifferentiated carcinoma, SWI/SNF complex-deficient carcinomas, and adamantinoma-like Ewing sarcoma.
CONCLUSION CONCLUSIONS
In some instances, histology alone may be sufficient for diagnosis. However, limited biopsy material or fine-needle aspiration specimens may be particularly challenging. Therefore, often other diagnostic procedures, including a combination of histology, immunohistochemistry (IHC), DNA and RNA testing, and molecular genetics are necessary to establish an accurate diagnosis.

Identifiants

pubmed: 36928732
doi: 10.1007/s12105-022-01508-8
pii: 10.1007/s12105-022-01508-8
pmc: PMC10063752
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

16-32

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Bishop JA, Brandwein-Gensler M, Nicolai P, et al Non-keratinizing squamous cell carcinoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. WHO classification of head and neck tumours 2017; 9:15–17.
Ansa B, Goodman M, Ward K, et al. Paranasal sinus squamous cell carcinoma incidence and survival based on Surveillance, Epidemiology, and End Results data, 1973 to 2009. Cancer. 2013;119:2602–10.
doi: 10.1002/cncr.28108 pubmed: 23674262
El-Mofty SK, Lu DW. Prevalence of high-risk human papillomavirus DNA in nonkeratinizing (cylindrical cell) carcinoma of the sinonasal tract: a distinct clinicopathologic and molecular disease entity. Am J Surg Pathol. 2005;29:1367–72.
doi: 10.1097/01.pas.0000173240.63073.fe pubmed: 16160480
Bishop JA, Guo TW, Smith DF, et al. Human papillomavirus-related carcinomas of the sinonasal tract. Am J Surg Pathol. 2013;37:185–92.
doi: 10.1097/PAS.0b013e3182698673 pubmed: 23095507 pmcid: 3545097
Lewis JS Jr, Westra WH, Thompson LD, et al. The sinonasal tract: another potential “hot spot” for carcinomas with transcriptionally-active human papillomavirus. Head Neck Pathol. 2014;8:241–9.
doi: 10.1007/s12105-013-0514-4 pubmed: 24338611
Laco J, Sieglova K, Vosmikova H, et al. The presence of high-risk human papillomavirus (HPV) E6/E7 mRNA transcripts in a subset of sinonasal carcinomas is evidence of involvement of HPV in its etiopathogenesis. Virchows Arch. 2015;467:405–15.
doi: 10.1007/s00428-015-1812-x pubmed: 26229021
Yang W, Lee KW, Srivastava RM, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25:767–75.
doi: 10.1038/s41591-019-0434-2 pubmed: 31011208 pmcid: 6558662
Todorovic E, Truong T, Eskander A, et al. Middle ear and temporal bone nonkeratinizing squamous cell carcinomas with DEK-AFF2 fusion: an emerging entity. Am J Surg Pathol. 2020;44:1244–50.
doi: 10.1097/PAS.0000000000001498 pubmed: 32366754
Kuo YJ, Lewis JS Jr, Zhai C, et al. DEK-AFF2 fusion-associated papillary squamous cell carcinoma of the sinonasal tract: clinicopathologic characterization of seven cases with deceptively bland morphology. Mod Pathol. 2021;34:1820–30.
doi: 10.1038/s41379-021-00846-2 pubmed: 34108636
Rooper LM, Agaimy A, Dickson BC, et al. DEK-AFF2 Carcinoma of the Sinonasal Region and Skull Base: Detailed Clinicopathologic Characterization of a Distinctive Entity. Am J Surg Pathol. 2021;45:1682–93.
doi: 10.1097/PAS.0000000000001741 pubmed: 34049316
Thompson LDR, Bishop JA. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Nasal Cavity, Paranasal Sinuses and Skull Base. Head Neck Pathol. 2022;16:1–18.
doi: 10.1007/s12105-021-01406-5 pubmed: 35312976 pmcid: 9018924
Lewis JS Jr, Chernock RD, Bishop JA. Squamous and neuroendocrine specific immunohistochemical markers in head and neck squamous cell carcinoma: a tissue microarray study. Head Neck Pathol. 2018;12:62–70.
doi: 10.1007/s12105-017-0825-y pubmed: 28528398
Jiromaru R, Yamamoto H, Yasumatsu R, et al. HPV-related sinonasal carcinoma: clinicopathologic features, diagnostic utility of p16 and Rb immunohistochemistry, and EGFR copy number alteration. Am J Surg Pathol. 2020;44:305–15.
doi: 10.1097/PAS.0000000000001410 pubmed: 31743130
Kuo YJ, Lewis JS Jr, Truong T, et al. Nuclear expression of AFF2 C-terminus is a sensitive and specific ancillary marker for DEK::AFF2 carcinoma of the sinonasal tract. Mod Pathol. 2022;35:1587–95.
doi: 10.1038/s41379-022-01117-4 pubmed: 35701667
Larque AB, Hakim S, Ordi J, et al. High-risk human papillomavirus is transcriptionally active in a subset of sinonasal squamous cell carcinomas. Mod Pathol. 2014;27:343–51.
doi: 10.1038/modpathol.2013.155 pubmed: 24030745
Wadsworth B, Bumpous JM, Martin AW, et al. Expression of p16 in sinonasal undifferentiated carcinoma (SNUC) without associated human papillomavirus (HPV). Head Neck Pathol. 2011;5:349–54.
doi: 10.1007/s12105-011-0285-8 pubmed: 21805120 pmcid: 3210220
Alos L, Hakim S, Larque AB, et al. p16 overexpression in high-grade neuroendocrine carcinomas of the head and neck: potential diagnostic pitfall with HPV-related carcinomas. Virchows Arch. 2016;469:277–84.
doi: 10.1007/s00428-016-1982-1 pubmed: 27392929
Chowdhury N, Alvi S, Kimura K, et al. Outcomes of HPV-related nasal squamous cell carcinoma. Laryngoscope. 2017;127:1600–3.
doi: 10.1002/lary.26477 pubmed: 28271500
Schlussel Markovic E, Marqueen KE, Sindhu KK, et al. The prognostic significance of human papilloma virus in sinonasal squamous cell carcinoma. Laryngoscope Investig Otolaryngol. 2020;5:1070–8.
doi: 10.1002/lio2.468 pubmed: 33364396 pmcid: 7752049
Bishop JA, Gagan J, Paterson C, et al. Nonkeratinizing squamous cell carcinoma of the sinonasal tract with DEK-AFF2: further solidifying an emerging entity. Am J Surg Pathol. 2021;45:718–20.
doi: 10.1097/PAS.0000000000001596 pubmed: 33002918
Stenman G, Licitra L, S-A-N N, et al. Adenoid cystic carcinoma. In: Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors., et al., El-Naggar AK. Lyon: WHO classification of head and neck tumours. IARC Press; 2017. p. 164–5.
Thompson LD, Penner C, Ho NJ, et al. Sinonasal tract and nasopharyngeal adenoid cystic carcinoma: a clinicopathologic and immunophenotypic study of 86 cases. Head Neck Pathol. 2014;8:88–109.
doi: 10.1007/s12105-013-0487-3 pubmed: 24037641
Perzin KH, Gullane P, Clairmont AC. Adenoid cystic carcinomas arising in salivary glands: a correlation of histologic features and clinical course. Cancer. 1978;42:265–82.
doi: 10.1002/1097-0142(197807)42:1<265::AID-CNCR2820420141>3.0.CO;2-Z pubmed: 208752
Szanto PA, Luna MA, Tortoledo ME, et al. Histologic grading of adenoid cystic carcinoma of the salivary glands. Cancer. 1984;54:1062–9.
doi: 10.1002/1097-0142(19840915)54:6<1062::AID-CNCR2820540622>3.0.CO;2-E pubmed: 6088017
van Weert S, van der Waal I, Witte BI, et al. Histopathological grading of adenoid cystic carcinoma of the head and neck: analysis of currently used grading systems and proposal for a simplified grading scheme. Oral Oncol. 2015;51:71–6.
doi: 10.1016/j.oraloncology.2014.10.007 pubmed: 25456010
Morita N, Murase T, Ueda K, et al. Pathological evaluation of tumor grade for salivary adenoid cystic carcinoma: A proposal of an objective grading system. Cancer Sci. 2021;112:1184–95.
doi: 10.1111/cas.14790 pubmed: 33377247 pmcid: 7935776
Seethala RR. An update on grading of salivary gland carcinomas. Head Neck Pathol. 2009;3:69–77.
doi: 10.1007/s12105-009-0102-9 pubmed: 20596994 pmcid: 2807532
Brill LB 2nd, Kanner WA, Fehr A, et al. Analysis of MYB expression and MYB-NFIB gene fusions in adenoid cystic carcinoma and other salivary neoplasms. Mod Pathol. 2011;24:1169–76.
doi: 10.1038/modpathol.2011.86 pubmed: 21572406
Stenman G, Sandros J, Dahlenfors R, et al. 6q- and loss of the Y chromosome–two common deviations in malignant human salivary gland tumors. Cancer Genet Cytogenet. 1986;22:283–93.
doi: 10.1016/0165-4608(86)90021-X pubmed: 3015376
Persson M, Andren Y, Mark J, et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A. 2009;106:18740–4.
doi: 10.1073/pnas.0909114106 pubmed: 19841262 pmcid: 2773970
Mitani Y, Liu B, Rao PH, et al. Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB Fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations. Clin Cancer Res. 2016;22:725–33.
doi: 10.1158/1078-0432.CCR-15-2867-T pubmed: 26631609
Drier Y, Cotton MJ, Williamson KE, et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat Genet. 2016;48:265–72.
doi: 10.1038/ng.3502 pubmed: 26829750 pmcid: 4767593
Andersson MK, Afshari MK, Andren Y, et al. Targeting the oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition of IGF1R/AKT Signaling. J Natl Cancer Inst. 2017. https://doi.org/10.1093/jnci/djx017 .
doi: 10.1093/jnci/djx017 pubmed: 28954282
Frerich CA, Sedam HN, Kang H, et al. N-terminal truncated myb with new transcriptional activity produced through use of an alternative MYB promoter in salivary gland adenoid cystic carcinoma. Cancers. 2019;12(1):45.
doi: 10.3390/cancers12010045 pubmed: 31877778 pmcid: 7016764
Andersson MK, Mangiapane G, Nevado PT, et al. ATR is a MYB regulated gene and potential therapeutic target in adenoid cystic carcinoma. Oncogenesis. 2020;9:5.
doi: 10.1038/s41389-020-0194-3 pubmed: 32001675 pmcid: 6992744
Bjorndal K, Krogdahl A, Therkildsen MH, et al. Salivary adenoid cystic carcinoma in Denmark 1990–2005: outcome and independent prognostic factors including the benefit of radiotherapy. results of the danish head and neck cancer group (DAHANCA). Oral Oncol. 2015;51:1138–42.
doi: 10.1016/j.oraloncology.2015.10.002 pubmed: 26476712
Hang JF, Hsieh MS, Li WY, et al. Human papillomavirus-related carcinoma with adenoid cystic-like features: a series of five cases expanding the pathological spectrum. Histopathology. 2017;71:887–96.
doi: 10.1111/his.13301 pubmed: 28664668
Bishop JA, Ogawa T, Stelow EB, et al. Human papillomavirus-related carcinoma with adenoid cystic-like features: a peculiar variant of head and neck cancer restricted to the sinonasal tract. Am J Surg Pathol. 2013;37:836–44.
doi: 10.1097/PAS.0b013e31827b1cd6 pubmed: 23598962 pmcid: 3653997
Bjørndal K, Krogdahl A, Therkildsen MH, et al. WHO Classification of Tumours Editorial Board. Head and neck tumours. Lyon (France): International Agency for Research on Cancer; 2022. (WHO classification of tumours series, 5th ed.; vol. 9). https://publications.iarc.fr/
Bishop JA, Andreasen S, Hang JF, et al. HPV-related multiphenotypic sinonasal carcinoma: an expanded series of 49 cases of the tumor formerly known as HPV-related carcinoma with adenoid cystic carcinoma-like features. Am J Surg Pathol. 2017;41:1690–701.
doi: 10.1097/PAS.0000000000000944 pubmed: 28877065 pmcid: 5680105
Bishop JA, Westra WH. Human papillomavirus-related multiphenotypic sinonasal carcinoma: An emerging tumor type with a unique microscopic appearance and a paradoxical clinical behaviour. Oral Oncol. 2018;87:17–20.
doi: 10.1016/j.oraloncology.2018.10.011 pubmed: 30527234
Thompson LDR. HPV-related multiphenotypic sinonasal carcinoma. Ear Nose Throat J. 2020;99:94–5.
doi: 10.1177/0145561319871711 pubmed: 31476886
Rodarte AI, Parikh AS, Gadkaree SK, et al. Human papillomavirus related multiphenotypic sinonasal carcinoma: report of a case with early and progressive metastatic disease. J Neurol Surg Rep. 2019;80:e41-3.
doi: 10.1055/s-0039-3399571 pubmed: 31737465 pmcid: 6855919
Rooper LM, McCuiston AM, Westra WH, et al. SOX10 immunoexpression in basaloid squamous cell carcinomas: a diagnostic pitfall for ruling out salivary differentiation. Head Neck Pathol. 2019;13:543–7.
doi: 10.1007/s12105-018-0990-7 pubmed: 30498968
Andreasen S, Bishop JA, Hansen TV, et al. Human papillomavirus-related carcinoma with adenoid cystic-like features of the sinonasal tract: clinical and morphological characterization of six new cases. Histopathology. 2017;70:880–8.
doi: 10.1111/his.13162 pubmed: 28035703
Antony VM, Kakkar A, Sikka K, et al. p16 Immunoexpression in sinonasal and nasopharyngeal adenoid cystic carcinomas: a potential pitfall in ruling out HPV-related multiphenotypic sinonasal carcinoma. Histopathology. 2020;77:989–93.
doi: 10.1111/his.14212 pubmed: 32671903
Moya-Plana A, Auperin A, Obongo R, et al. Oncologic outcomes, prognostic factor analysis and therapeutic algorithm evaluation of head and neck mucosal melanomas in France. Eur J Cancer. 2019;123:1–10.
doi: 10.1016/j.ejca.2019.09.007 pubmed: 31670075
Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.
doi: 10.1038/nature12477 pubmed: 23945592 pmcid: 3776390
Furney SJ, Turajlic S, Stamp G, et al. The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis. Pigment Cell Melanoma Res. 2014;27:835–8.
doi: 10.1111/pcmr.12279 pubmed: 24913711
Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545:175–80.
doi: 10.1038/nature22071 pubmed: 28467829
Chlopek M, Lasota J, Thompson LDR, et al. Alterations in key signaling pathways in sinonasal tract melanoma. A molecular genetics and immunohistochemical study of 90 cases and comprehensive review of the literature. Mod Pathol. 2022;35:1609–17.
doi: 10.1038/s41379-022-01122-7 pubmed: 35978013
Merkel EA, Gerami P. Malignant melanoma of sun-protected sites: a review of clinical, histological, and molecular features. Lab Invest. 2017;97:630–5.
doi: 10.1038/labinvest.2016.147 pubmed: 28092366
Salari B, Foreman RK, Emerick KS, et al. Sinonasal mucosal melanoma: an update and review of the literature. Am J Dermatopathol. 2022;44:424–32.
doi: 10.1097/DAD.0000000000002157 pubmed: 35315370
Thompson LD, Wieneke JA, Miettinen M. Sinonasal tract and nasopharyngeal melanomas: a clinicopathologic study of 115 cases with a proposed staging system. Am J Surg Pathol. 2003;27:594–611.
doi: 10.1097/00000478-200305000-00004 pubmed: 12717245
Lee H, Torres FX, McLean SA, et al. Immunophenotypic heterogeneity of primary sinonasal melanoma with aberrant expression of neuroendocrine markers and calponin. Appl Immunohistochem Mol Morphol. 2011;19:48–53.
doi: 10.1097/PAI.0b013e3181ee8dcb pubmed: 20881840
Smith SM, Schmitt AC, Carrau RL, et al. Primary sinonasal mucosal melanoma with aberrant diffuse and strong desmin reactivity: a potential diagnostic pitfall! Head Neck Pathol. 2015;9:165–71.
doi: 10.1007/s12105-014-0553-5 pubmed: 24974197
Zebary A, Jangard M, Omholt K, et al. KIT, NRAS and BRAF mutations in sinonasal mucosal melanoma: a study of 56 cases. Br J Cancer. 2013;109:559–64.
doi: 10.1038/bjc.2013.373 pubmed: 23860532 pmcid: 3738146
Wroblewska JP, Mull J, Wu CL, et al. SF3B1, NRAS, KIT, and BRAF mutation; CD117 and cMYC expression; and tumoral pigmentation in sinonasal melanomas: an analysis with newly found molecular alterations and some population-based molecular differences. Am J Surg Pathol. 2019;43:168–77.
doi: 10.1097/PAS.0000000000001166 pubmed: 30273197
Na’ara S, Mukherjee A, Billan S, et al. Contemporary multidisciplinary management of sinonasal mucosal melanoma. Onco Targets Ther. 2020;13:2289–98.
doi: 10.2147/OTT.S182580 pubmed: 32214828 pmcid: 7083634
Lewis JS, Bishop JA, Gillison M, et al. Sinonasal undifferentiated carcinoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors., et al., WHO classification of head and neck tumours. Lyon: IARC; 2017. p. 18–20.
Zhou M, Yuan J, Deng Y, et al. Emerging role of SWI/SNF complex deficiency as a target of immune checkpoint blockade in human cancers. Oncogenesis. 2021;10:3.
doi: 10.1038/s41389-020-00296-6 pubmed: 33419967 pmcid: 7794300
Hodges C, Kirkland JG, Crabtree GR. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb Perspect Med. 2016;6(8).
doi: 10.1101/cshperspect.a026930
Wang X, Haswell JR, Roberts CW. Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer–mechanisms and potential therapeutic insights. Clin Cancer Res. 2014;20:21–7.
doi: 10.1158/1078-0432.CCR-13-0280 pubmed: 24122795
Shah AA, Jain D, Ababneh E, et al. SMARCB1 (INI-1)-deficient adenocarcinoma of the sinonasal tract: a potentially under-recognized form of sinonasal adenocarcinoma with occasional yolk sac tumor-like features. Head Neck Pathol. 2020;14:465–72.
doi: 10.1007/s12105-019-01065-7 pubmed: 31468350
Agaimy A, Hartmann A, Antonescu CR, et al. SMARCB1 (INI-1)-deficient sinonasal carcinoma: a series of 39 cases expanding the morphologic and clinicopathologic spectrum of a recently described entity. Am J Surg Pathol. 2017;41:458–71.
doi: 10.1097/PAS.0000000000000797 pubmed: 28291122 pmcid: 5354087
Agaimy A, Jain D, Uddin N, et al. SMARCA4-deficient sinonasal carcinoma: a series of 10 cases expanding the genetic spectrum of SWI/SNF-driven sinonasal malignancies. Am J Surg Pathol. 2020;44:703–10.
doi: 10.1097/PAS.0000000000001428 pubmed: 31934917
Agaimy A, Koch M, Lell M, et al. SMARCB1(INI1)-deficient sinonasal basaloid carcinoma: a novel member of the expanding family of SMARCB1-deficient neoplasms. Am J Surg Pathol. 2014;38:1274–81.
doi: 10.1097/PAS.0000000000000236 pubmed: 24832165 pmcid: 4141899
Bishop JA, Antonescu CR, Westra WH. SMARCB1 (INI-1)-deficient carcinomas of the sinonasal tract. Am J Surg Pathol. 2014;38:1282–9.
doi: 10.1097/PAS.0000000000000285 pubmed: 25007146 pmcid: 4134731
Agaimy A, Bishop JA. SWI/SNF-deficient head and neck neoplasms: An overview. Semin Diagn Pathol. 2021;38:175–82.
doi: 10.1053/j.semdp.2021.02.002 pubmed: 33663878
Kasajima A, Konukiewitz B, Schlitter AM, et al. Mesenchymal/non-epithelial mimickers of neuroendocrine neoplasms with a focus on fusion gene-associated and SWI/SNF-deficient tumors. Virchows Arch. 2021;479:1209–19.
doi: 10.1007/s00428-021-03156-9 pubmed: 34350470 pmcid: 8724147
Pasricha S, Kamboj M, Jajodia A, et al. High grade myoepithelial carcinoma of maxillary sinus with extensive rhabdoid differentiation and INI-1 loss: expanding the histopathological spectrum of sinonasal carcinoma. Head Neck Pathol. 2021;16(3):876–80.
doi: 10.1007/s12105-021-01397-3 pubmed: 34878636 pmcid: 9424476
Agaimy A, Weichert W. SMARCA4-deficient Sinonasal Carcinoma. Head Neck Pathol. 2017;11:541–5.
doi: 10.1007/s12105-017-0783-4 pubmed: 28176137 pmcid: 5677070
Kakkar A, Ashraf SF, Rathor A, et al. SMARCA4/BRG1-deficient sinonasal carcinoma: morphologic spectrum of an evolving entity. Arch Pathol Lab Med. 2021;146(9):1122–30.
doi: 10.5858/arpa.2021-0001-OA
Dogan S, Cotzia P, Ptashkin RN, et al. Genetic basis of SMARCB1 protein loss in 22 sinonasal carcinomas. Hum Pathol. 2020;104:105–16.
doi: 10.1016/j.humpath.2020.08.004 pubmed: 32818509 pmcid: 7669579
French CA, Bishop JA, Lewis JE, et al. NUT carcinoma. In: El-Naggar AK, Chan JKC, Takata Grandis JR., T, Slootweg PJ, editors., et al., WHO classification of head and neck tumours. Lyon: IARC; 2017.
Bishop JA, Westra WH. NUT midline carcinomas of the sinonasal tract. Am J Surg Pathol. 2012;36:1216–21.
doi: 10.1097/PAS.0b013e318254ce54 pubmed: 22534723 pmcid: 4124635
Chau NG, Ma C, Danga K, et al. An anatomical site and genetic-based prognostic model for patients with nuclear protein in testis (NUT) midline carcinoma: analysis of 124 patients. JNCI Cancer Spectr. 2020;4:pkz094.
doi: 10.1093/jncics/pkz094 pubmed: 32328562
French CA, Kutok JL, Faquin WC, et al. Midline carcinoma of children and young adults with NUT rearrangement. J Clin Oncol. 2004;22:4135–9.
doi: 10.1200/JCO.2004.02.107 pubmed: 15483023
Haack H, Johnson LA, Fry CJ, et al. Diagnosis of NUT midline carcinoma using a NUT-specific monoclonal antibody. Am J Surg Pathol. 2009;33:984–91.
doi: 10.1097/PAS.0b013e318198d666 pubmed: 19363441 pmcid: 2783402
Yang S, Liu L, Yan Y, et al. CIC-NUTM1 sarcomas affecting the spine. Arch Pathol Lab Med. 2022;146:735–41.
doi: 10.5858/arpa.2021-0153-OA pubmed: 34525172
Matsuda K, Kashima J, Yatabe Y. The isoform matters in NUT carcinoma: a diagnostic pitfall of p40 immunohistochemistry. J Thorac Oncol. 2020;15:e176-8.
doi: 10.1016/j.jtho.2020.07.017 pubmed: 32981612
Zhu B, Laskin W, Chen Y, et al. NUT midline carcinoma: a neoplasm with diagnostic challenges in cytology. Cytopathology. 2011;22:414–7.
doi: 10.1111/j.1365-2303.2010.00838.x pubmed: 21210877
Morrison-Smith CD, Knox TM, Filic I, et al. Combined targeting of the BRD4-NUT-p300 Axis in NUT midline carcinoma by dual selective bromodomain inhibitor, NEO2734. Mol Cancer Ther. 2020;19:1406–14.
doi: 10.1158/1535-7163.MCT-20-0087 pubmed: 32371576
Frierson HF Jr, Mills SE, Fechner RE, et al. Sinonasal undifferentiated carcinoma. an aggressive neoplasm derived from schneiderian epithelium and distinct from olfactory neuroblastoma. Am J Surg Pathol. 1986;10:771–9.
doi: 10.1097/00000478-198611000-00004 pubmed: 2430477
Stelow EB, Bellizzi AM, Taneja K, et al. NUT rearrangement in undifferentiated carcinomas of the upper aerodigestive tract. Am J Surg Pathol. 2008;32:828–34.
doi: 10.1097/PAS.0b013e31815a3900 pubmed: 18391746
Chambers KJ, Lehmann AE, Remenschneider A, et al. Incidence and survival patterns of sinonasal undifferentiated carcinoma in the United States. J Neurol Surg B Skull Base. 2015;76:94–100.
pubmed: 25844294
Franchi A, Moroni M, Massi D, et al. Sinonasal undifferentiated carcinoma, nasopharyngeal-type undifferentiated carcinoma, and keratinizing and nonkeratinizing squamous cell carcinoma express different cytokeratin patterns. Am J Surg Pathol. 2002;26:1597–604.
doi: 10.1097/00000478-200212000-00007 pubmed: 12459626
Singh L, Ranjan R, Arava S, et al. Role of p40 and cytokeratin 5/6 in the differential diagnosis of sinonasal undifferentiated carcinoma. Ann Diagn Pathol. 2014;18:261–5.
doi: 10.1016/j.anndiagpath.2014.01.003 pubmed: 25017972
Lopategui JR, Gaffey MJ, Frierson HF Jr, et al. Detection of Epstein-Barr viral RNA in sinonasal undifferentiated carcinoma from Western and Asian patients. Am J Surg Pathol. 1994;18:391–8.
doi: 10.1097/00000478-199404000-00007 pubmed: 7511355
Cerilli LA, Holst VA, Brandwein MS, et al. Sinonasal undifferentiated carcinoma: immunohistochemical profile and lack of EBV association. Am J Surg Pathol. 2001;25:156–63.
doi: 10.1097/00000478-200102000-00003 pubmed: 11176064
Gray ST, Herr MW, Sethi RK, et al. Treatment outcomes and prognostic factors, including human papillomavirus, for sinonasal undifferentiated carcinoma: a retrospective review. Head Neck. 2015;37:366–74.
doi: 10.1002/hed.23606 pubmed: 24421248
Wooff JC, Weinreb I, Perez-Ordonez B, et al. Calretinin staining facilitates differentiation of olfactory neuroblastoma from other small round blue cell tumors in the sinonasal tract. Am J Surg Pathol. 2011;35:1786–93.
doi: 10.1097/PAS.0b013e3182363b78 pubmed: 22020045
Dogan S, Frosina D, Fayad M, et al. The role of a monoclonal antibody 11C8B1 as a diagnostic marker of IDH2-mutated sinonasal undifferentiated carcinoma. Mod Pathol. 2019;32:205–15.
doi: 10.1038/s41379-018-0126-3 pubmed: 30206411
Dogan S, Chute DJ, Xu B, et al. Frequent IDH2 R172 mutations in undifferentiated and poorly-differentiated sinonasal carcinomas. J Pathol. 2017;242:400–8.
doi: 10.1002/path.4915 pubmed: 28493366 pmcid: 5639875
Smith SL, Hessel AC, Luna MA, et al. Sinonasal teratocarcinosarcoma of the head and neck: a report of 10 patients treated at a single institution and comparison with reported series. Arch Otolaryngol Head Neck Surg. 2008;134:592–5.
doi: 10.1001/archotol.134.6.592 pubmed: 18559724
Chapurin N, Totten DJ, Morse JC, et al. Treatment of sinonasal teratocarcinosarcoma: a systematic review and survival analysis. Am J Rhinol Allergy. 2021;35:132–41.
doi: 10.1177/1945892420959585 pubmed: 32954838
Su SY, Bell D, Hanna EY. Esthesioneuroblastoma, neuroendocrine carcinoma, and sinonasal undifferentiated carcinoma: differentiation in diagnosis and treatment. Int Arch Otorhinolaryngol. 2014;18:149–56.
doi: 10.1055/s-0034-1390014
Franchi A, Wenig BM. Teratocarcinosarcoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. WHO classification of head and neck tumours. Lyon: IARC; 2017.
Fatima SS, Minhas K, Din NU, et al. Sinonasal teratocarcinosarcoma: a clinicopathologic and immunohistochemical study of 6 cases. Ann Diagn Pathol. 2013;17:313–8.
doi: 10.1016/j.anndiagpath.2013.01.003 pubmed: 23462185
Rooper LM, Bishop JA, Westra WH. INSM1 is a sensitive and specific marker of neuroendocrine differentiation in head and neck tumors. Am J Surg Pathol. 2018;42:665–71.
doi: 10.1097/PAS.0000000000001037 pubmed: 29438167
Rooper LM, Uddin N, Gagan J, et al. Recurrent loss of SMARCA4 in sinonasal teratocarcinosarcoma. Am J Surg Pathol. 2020;44:1331–9.
doi: 10.1097/PAS.0000000000001508 pubmed: 32520761
Birkeland AC, Burgin SJ, Yanik M, et al. Pathogenetic analysis of sinonasal teratocarcinosarcomas reveal actionable beta-catenin overexpression and a beta-catenin Mutation. J Neurol Surg B Skull Base. 2017;78:346–52.
doi: 10.1055/s-0037-1601320 pubmed: 28725522 pmcid: 5515660
Minasi S, De Vincentiis L, D’Ecclesia A, et al. Pathogenetic analysis of sinonasal teratocarcinosarcomas reveal actionable beta-catenin overexpression and a beta-catenin mutation. J Neurol Surg B Skull Base. 2021;82:e112-3.
doi: 10.1055/s-0039-3400228 pubmed: 34306925
Compton ML, Lewis JS Jr, Faquin WC, et al. SALL-4 and beta-catenin expression in sinonasal teratocarcinosarcoma. Head Neck Pathol. 2022;16:229–35.
doi: 10.1007/s12105-021-01343-3 pubmed: 34106411
Xiong J, Todorova D, Su NY, et al. Stemness factor Sall4 is required for DNA damage response in embryonic stem cells. J Cell Biol. 2015;208:513–20.
doi: 10.1083/jcb.201408106 pubmed: 25733712 pmcid: 4347641
Aras S, Saladi SV, Basuroy T, et al. BAF60A mediates interactions between the microphthalmia-associated transcription factor and the BRG1-containing SWI/SNF complex during melanocyte differentiation. J Cell Physiol. 2019;234:11780–91.
doi: 10.1002/jcp.27840 pubmed: 30515787
Bridge JA, Fidler ME, Neff JR, et al. Adamantinoma-like Ewing’s sarcoma: genomic confirmation, phenotypic drift. Am J Surg Pathol. 1999;23:159–65.
doi: 10.1097/00000478-199902000-00004 pubmed: 9989842
Bishop JA, Alaggio R, Zhang L, et al. Adamantinoma-like Ewing family tumors of the head and neck: a pitfall in the differential diagnosis of basaloid and myoepithelial carcinomas. Am J Surg Pathol. 2015;39:1267–74.
doi: 10.1097/PAS.0000000000000460 pubmed: 26034869 pmcid: 4537687
Rooper LM, Jo VY, Antonescu CR, et al. Adamantinoma-like Ewing sarcoma of the salivary glands: a newly recognized mimicker of basaloid salivary carcinomas. Am J Surg Pathol. 2019;43:187–94.
doi: 10.1097/PAS.0000000000001171 pubmed: 30285997 pmcid: 8115302
Rooper LM, Bishop JA. Soft tissue special issue: adamantinoma-like Ewing sarcoma of the head and neck: a practical review of a challenging emerging entity. Head Neck Pathol. 2020;14:59–69.
doi: 10.1007/s12105-019-01098-y pubmed: 31950471 pmcid: 7021882
Folpe AL, Goldblum JR, Rubin BP, et al. Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol. 2005;29:1025–33.
doi: 10.1097/01.pas.0000167056.13614.62 pubmed: 16006796
McCuiston A, Bishop JA. Usefulness of NKX2.2 immunohistochemistry for distinguishing Ewing sarcoma from other sinonasal small round blue cell tumors. Head Neck Pathol. 2018;12:89–94.
doi: 10.1007/s12105-017-0830-1 pubmed: 28616785
Shibuya R, Matsuyama A, Nakamoto M, et al. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch. 2014;465:599–605.
doi: 10.1007/s00428-014-1627-1 pubmed: 25031013
Antonescu CR, Zhang L, Chang NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer. 2010;49:1114–24.
doi: 10.1002/gcc.20819 pubmed: 20815032 pmcid: 3540416
Brandal P, Panagopoulos I, Bjerkehagen B, et al. t(19;22)(q13;q12) Translocation leading to the novel fusion gene EWSR1-ZNF444 in soft tissue myoepithelial carcinoma. Genes Chromosomes Cancer. 2009;48:1051–6.
doi: 10.1002/gcc.20706 pubmed: 19760602
Agaram NP, Chen HW, Zhang L, et al. EWSR1-PBX3: a novel gene fusion in myoepithelial tumors. Genes Chromosomes Cancer. 2015;54:63–71.
doi: 10.1002/gcc.22216 pubmed: 25231231
Shibuya R, Matsuyama A, Nakamoto M, et al. Myoepithelioma, myoepithelial crcinoma and mixed tumour. In: World Health Organization classification of tumours 5th edition Soft tissue and bone tumours Lyon, France: IARC Press 2020:277–279.
Trojanowski JQ, Lee V, Pillsbury N, et al. Neuronal origin of human esthesioneuroblastoma demonstrated with anti-neurofilament monoclonal antibodies. N Engl J Med. 1982;307:159–61.
doi: 10.1056/NEJM198207153070305 pubmed: 7201076
Bell D, Franchi A, Gillison M, et al. Olfactory neuroblastoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors., et al., WHO classification of head and neck tumours. Lyon: IARC; 2017.
Hartmann W, LH. S,. Tumors of the upper respiratory tract and ear. In: Hyams VJ, Batsakis JG, Michaels L, editors. AFIP atlas of tumor pathology, 2nd series, Fascicle 25. Washington: Armed Forces Institute of Pathology; 1988.
Cracolici V, Wang EW, Gardner PA, et al. SSTR2 expression in olfactory neuroblastoma: clinical and therapeutic implications. Head Neck Pathol. 2021;15:1185–91.
doi: 10.1007/s12105-021-01329-1 pubmed: 33929681 pmcid: 8633213
Mills SE. Neuroectodermal neoplasms of the head and neck with emphasis on neuroendocrine carcinomas. Mod Pathol. 2002;15:264–78.
doi: 10.1038/modpathol.3880522 pubmed: 11904342
Holbrook EH, Wu E, Curry WT, et al. Immunohistochemical characterization of human olfactory tissue. Laryngoscope. 2011;121:1687–701.
doi: 10.1002/lary.21856 pubmed: 21792956 pmcid: 3181071
Bourne TD, Bellizzi AM, Stelow EB, et al. p63 Expression in olfactory neuroblastoma and other small cell tumors of the sinonasal tract. Am J Clin Pathol. 2008;130:213–8.
doi: 10.1309/TEDD2FCWH8W0H4HA pubmed: 18628089
Bishop JA, Thompson LD, Cardesa A, et al. Rhabdomyoblastic differentiation in head and neck malignancies other than rhabdomyosarcoma. Head Neck Pathol. 2015;9:507–18.
doi: 10.1007/s12105-015-0624-2 pubmed: 25757816 pmcid: 4651923
Mehta GU, Raza SM, Su SY, et al. Management of olfactory neuroblastoma, neuroendocrine carcinoma, and sinonasal undifferentiated carcinoma involving the skullbase. J Neurooncol. 2020;150:367–75.
doi: 10.1007/s11060-020-03537-1 pubmed: 32424573

Auteurs

Martina Baněčková (M)

Department of Pathology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic. baneckova.martina@gmail.com.
Bioptic Laboratory Ltd, Plzen, Czech Republic. baneckova.martina@gmail.com.
Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, E. Benese 13, 305 99, Pilsen, Czech Republic. baneckova.martina@gmail.com.

Darren Cox (D)

University of Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH