Targeted Treatments for Fragile X Syndrome.

AFQ056 Arbaclofen FXTAS Fragile X syndrome Medications Metformin Minocycline Premutation Treatments

Journal

Advances in neurobiology
ISSN: 2190-5215
Titre abrégé: Adv Neurobiol
Pays: United States
ID NLM: 101571545

Informations de publication

Date de publication:
2023
Historique:
entrez: 17 3 2023
pubmed: 18 3 2023
medline: 22 3 2023
Statut: ppublish

Résumé

The histories of targeted treatment trials in fragile X syndrome (FXS) are reviewed in animal studies and human trials. Advances in understanding the neurobiology of FXS have identified a number of pathways that are dysregulated in the absence of FMRP and are therefore pathways that can be targeted with new medication. The utilization of quantitative outcome measures to assess efficacy in multiple studies has improved the quality of more recent trials. Current treatment trials including the use of cannabidiol (CBD) topically and metformin orally have positive preliminary data, and both of these medications are available clinically. The use of the phosphodiesterase inhibitor (PDE4D), BPN1440, which raised the level of cAMP that is low in FXS has very promising results for improving cognition in adult males who underwent a controlled trial. There are many more targeted treatments that will undergo trials in FXS, so the future looks bright for new treatments.

Identifiants

pubmed: 36928853
doi: 10.1007/978-3-031-21054-9_10
doi:

Substances chimiques

Metformin 9100L32L2N
Cannabidiol 19GBJ60SN5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

225-253

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Loesch DZ, Huggins RM, Hagerman RJ. Phenotypic variation and FMRP levels in fragile X. Ment Retard Dev Disabil Res Rev. 2004;10:31–41.
pubmed: 14994286 doi: 10.1002/mrdd.20006
Thurman AJ, McDuffie A, Kover ST, Hagerman RJ, Abbeduto L. Autism symptomatology in boys with fragile X syndrome: a cross sectional developmental trajectories comparison with nonsyndromic autism spectrum disorder. J Autism Dev Disord. 2015;45:2816–32.
pubmed: 25904201 pmcid: 4554893 doi: 10.1007/s10803-015-2443-4
Cornish K, Steele A, Monteiro CRC, Karmiloff-Smith A, Scerif G. Attention deficits predict phenotypic outcomes in syndrome-specific and domain-specific ways. Front Psychol. 2012;3:227.
pubmed: 22798954 pmcid: 3394437 doi: 10.3389/fpsyg.2012.00227
Cordeiro L, Ballinger E, Hagerman R, Hessl D. Clinical assessment of DSM-IV anxiety disorders in fragile X syndrome: prevalence and characterization. J Neurodev Disord. 2011;3:57–67.
pubmed: 21475730 doi: 10.1007/s11689-010-9067-y
Hess KL, Morrier MJ, Heflin LJ, Ivey ML. Autism treatment survey: services received by children with autism spectrum disorders in public school classrooms. J Autism Dev Disord. 2008;38:961–71.
pubmed: 17929155 doi: 10.1007/s10803-007-0470-5
Hagerman RJ, et al. Fragile X syndrome. Nat Rev Dis Prim. 2017;3:17065.
pubmed: 28960184 doi: 10.1038/nrdp.2017.65
Tassone F, et al. FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med. 2012;4:100.
pubmed: 23259642 pmcid: 4064316 doi: 10.1186/gm401
Schneider A. MRNET Conference. Mol Syndromol. 2010;1:136–57.
doi: 10.1159/000320025
Ludwig AL, et al. CNS expression of murine fragile X protein (FMRP) as a function of CGG-repeat size. Hum Mol Genet. 2014;23:3228–38.
pubmed: 24463622 pmcid: 4030777 doi: 10.1093/hmg/ddu032
The Dutch-Belgian Fragile X Consorthium et al. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell. 1994;78:23–33.
Bakker CE, Oostra BA. Understanding fragile X syndrome: insights from animal models. Cytogenet Genome Res. 2003;100:111–23.
pubmed: 14526171 doi: 10.1159/000072845
Lu Y-M, et al. Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 Long-term potentiation (LTP) but normal CA3 LTP. J Neurosci. 1997;17:5196–205.
pubmed: 9185557 pmcid: 6573299 doi: 10.1523/JNEUROSCI.17-13-05196.1997
Wan L, Dockendorff TC, Jongens TA, Dreyfuss G. Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol. 2000;20:8536–47.
pubmed: 11046149 pmcid: 102159 doi: 10.1128/MCB.20.22.8536-8547.2000
Kulkarni P, Sevilimedu A. The known unknowns: missing pieces in in vivo models of fragile X syndrome. J Rare Dis Res Treat. 2020;5:1–9.
doi: 10.29245/2572-9411/2020/1.1190
Errijgers V, Kooy RF. Genetic modifiers in mice: the example of the fragile X mouse model. Cytogenet Genome Res. 2004;105:448–54.
pubmed: 15237233 doi: 10.1159/000078218
Dockendorff TC, et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron. 2002;34:973–84.
pubmed: 12086644 doi: 10.1016/S0896-6273(02)00724-9
Gholizadeh S, Halder SK, Hampson DR. Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain. Brain Res. 2015;1596:22–30.
pubmed: 25446451 doi: 10.1016/j.brainres.2014.11.023
Berry-Kravis EM, et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov. 2018;17:280–99.
pubmed: 29217836 doi: 10.1038/nrd.2017.221
Deng P-Y, Klyachko VA. Channelopathies in fragile X syndrome. Nat Rev Neurosci. 2021;22:275–89.
pubmed: 33828309 pmcid: 8863066 doi: 10.1038/s41583-021-00445-9
Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci. 2002;99:7746–50.
pubmed: 12032354 pmcid: 124340 doi: 10.1073/pnas.122205699
Dölen G, et al. Correction of fragile X syndrome in mice. Neuron. 2007;56:955–62.
pubmed: 18093519 pmcid: 2199268 doi: 10.1016/j.neuron.2007.12.001
Burket JA, Herndon AL, Winebarger EE, Jacome LF, Deutsch SI. Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: possible implications for the pharmacotherapy of autism spectrum disorders. Brain Res Bull. 2011;86:152–8.
pubmed: 21840381 doi: 10.1016/j.brainresbull.2011.08.001
Thomas AM, Bui N, Perkins JR, Yuva-Paylor LA, Paylor R. Group I metabotropic glutamate receptor antagonists alter select behaviors in a mouse model for fragile X syndrome. Psychopharmacology. 2012;219(47–58):47.
pubmed: 21656124 doi: 10.1007/s00213-011-2375-4
McBride SMJ, et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a drosophila model of fragile X syndrome. Neuron. 2005;45:753–64.
pubmed: 15748850 doi: 10.1016/j.neuron.2005.01.038
Fernandes G, et al. Correction of amygdalar dysfunction in a rat model of fragile X syndrome. Cell Rep. 2021;37:109805.
pubmed: 34644573 doi: 10.1016/j.celrep.2021.109805
Wolfe SA, et al. FMRP regulates an ethanol-dependent shift in GABABR function and expression with rapid antidepressant properties. Nat Commun. 2016;7:12867.
pubmed: 27666021 pmcid: 5052688 doi: 10.1038/ncomms12867
Braat S, et al. The GABA A receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle. 2015;14:2985–95.
pubmed: 25790165 pmcid: 4827888 doi: 10.4161/15384101.2014.989114
Braat S, Kooy RF. Insights into GABAAergic system deficits in fragile X syndrome lead to clinical trials. Neuropharmacology. 2015;88:48–54.
pubmed: 25016041 doi: 10.1016/j.neuropharm.2014.06.028
Reyes ST, et al. GABA measurement in a neonatal fragile X syndrome mouse model using 1H-magnetic resonance spectroscopy and mass spectrometry. Front Mol Neurosci. 2020;13:612685.
pubmed: 33390902 pmcid: 7775297 doi: 10.3389/fnmol.2020.612685
D’Hulst C, et al. Positron emission tomography (PET) quantification of GABAA receptors in the brain of fragile X patients. PLoS One. 2015;10:e0131486.
pubmed: 26222316 pmcid: 4519313 doi: 10.1371/journal.pone.0131486
Zhang W, et al. GABAB receptor upregulates fragile X mental retardation protein expression in neurons. Sci Rep. 2015;5:10468.
pubmed: 26020477 pmcid: 4447080 doi: 10.1038/srep10468
Kramvis I, et al. Dysregulated prefrontal cortex inhibition in prepubescent and adolescent fragile X mouse model. Front Mol Neurosci. 2020;13:88.
pubmed: 32528248 pmcid: 7264168 doi: 10.3389/fnmol.2020.00088
Selby L, Zhang C, Sun Q-Q. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci Lett. 2007;412:227–32.
pubmed: 17197085 doi: 10.1016/j.neulet.2006.11.062
Centonze D, et al. Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biol Psychiatry. 2008;63:963–73.
pubmed: 18028882 doi: 10.1016/j.biopsych.2007.09.008
Heulens I, D’Hulst C, Van Dam D, De Deyn PP, Kooy RF. Pharmacological treatment of fragile X syndrome with GABAergic drugs in a knockout mouse model. Behav Brain Res. 2012;229:244–9.
pubmed: 22285772 doi: 10.1016/j.bbr.2012.01.031
Olmos-Serrano JL, Corbin JG, Burns MP. The GABAA receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome. Dev Neurosci. 2011;33:395–403.
pubmed: 22067669 pmcid: 3254038 doi: 10.1159/000332884
Modgil A, et al. Neuroactive steroids reverse tonic inhibitory deficits in fragile X syndrome mouse model. Front Mol Neurosci. 2019;12:15.
pubmed: 30804752 pmcid: 6371020 doi: 10.3389/fnmol.2019.00015
Chang S, et al. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol. 2008;4:256–63.
pubmed: 18327252 doi: 10.1038/nchembio.78
Khalsa JH. Medical and health consequences of Marijuana. In: Marijuana and the Cannabinoids. Humana Press, pp. 237–252. https://doi.org/10.1007/978-1-59259-947-9_10 .
Fyke W, Velinov M. FMR1 and autism, an intriguing connection revisited. Genes (Basel). 2021;12:1218.
pubmed: 34440392 doi: 10.3390/genes12081218
Varma N, Carlson GC, Ledent C, Alger BE. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci. 2001;21:RC188.
pubmed: 11734603 pmcid: 6763031 doi: 10.1523/JNEUROSCI.21-24-j0003.2001
García-Rincón D, et al. Contribution of altered endocannabinoid system to overactive mTORC1 signaling in focal cortical dysplasia. Front Pharmacol. 2019;9:1508.
pubmed: 30687088 pmcid: 6334222 doi: 10.3389/fphar.2018.01508
Busquets-Garcia A, et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med. 2013;19:603–7.
pubmed: 23542787 doi: 10.1038/nm.3127
Maccarrone M, et al. Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neuropsychopharmacology. 2010;35:1500–9.
pubmed: 20393458 pmcid: 3055456 doi: 10.1038/npp.2010.19
Jung K-M, et al. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun. 2012;3:1080.
pubmed: 23011134 doi: 10.1038/ncomms2045
Pirbhoy PS, et al. Increased 2-arachidonoyl-sn-glycerol levels normalize cortical responses to sound and improve behaviors in Fmr1 KO mice. J Neurodev Disord. 2021;13:47.
pubmed: 34645383 pmcid: 8513313 doi: 10.1186/s11689-021-09394-x
Osterweil EK, Krueger DD, Reinhold K, Bear MF. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010;30:15616–27.
pubmed: 21084617 pmcid: 3400430 doi: 10.1523/JNEUROSCI.3888-10.2010
Saré RM, et al. Negative effects of chronic rapamycin treatment on behavior in a mouse model of fragile X syndrome. Front Mol Neurosci. 2018;10:452.
pubmed: 29375310 pmcid: 5770365 doi: 10.3389/fnmol.2017.00452
Asiminas A, et al. Sustained correction of associative learning deficits after brief, early treatment in a rat model of fragile X syndrome. Sci Transl Med. 2019;11:eaao0498.
pubmed: 31142675 pmcid: 8162683 doi: 10.1126/scitranslmed.aao0498
Thurman AJ, et al. Controlled trial of lovastatin combined with an open-label treatment of a parent-implemented language intervention in youth with fragile X syndrome. J Neurodev Disord. 2020;12:12.
pubmed: 32316911 pmcid: 7175541 doi: 10.1186/s11689-020-09315-4
Konopka A, et al. Matrix metalloproteinase-9 (MMP-9) in human intractable epilepsy caused by focal cortical dysplasia. Epilepsy Res. 2013;104:45–58.
pubmed: 23182966 doi: 10.1016/j.eplepsyres.2012.09.018
Ramírez-Cheyne JA, et al. Fragile X syndrome and connective tissue dysregulation. Clin Genet. 2019;95:262–7.
pubmed: 30414172 doi: 10.1111/cge.13469
Sidhu H, Dansie LE, Hickmott PW, Ethell DW, Ethell IM. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867–79.
pubmed: 25057190 pmcid: 4107404 doi: 10.1523/JNEUROSCI.1162-14.2014
Bilousova TV, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2008;46:94–102.
pubmed: 18835858 doi: 10.1136/jmg.2008.061796
Berry-Kravis E, Ciurlionis R. Overexpression of fragile X gene (FMR-1) transcripts increases cAMP production in neural cells. J Neurosci Res. 1998;51:41–8.
pubmed: 9452307 doi: 10.1002/(SICI)1097-4547(19980101)51:1<41::AID-JNR4>3.0.CO;2-L
Kelley DJ, et al. The cyclic AMP cascade is altered in the fragile X nervous system. PLoS One. 2007;2:e931.
pubmed: 17895972 pmcid: 1976557 doi: 10.1371/journal.pone.0000931
Berry-Kravis E, Huttenlocher PR. Cyclic AMP metabolism in fragile X syndrome. Ann Neurol. 1992;31:22–6.
pubmed: 1371909 doi: 10.1002/ana.410310105
Berry-Kravis E, Hicar M, Ciurlionis R. Reduced cyclic AMP production in fragile X syndrome: cytogenetic and molecular correlations. Pediatr Res. 1995;38:638–43.
pubmed: 8552427 doi: 10.1203/00006450-199511000-00002
Choi CH, et al. PDE-4 inhibition rescues aberrant synaptic plasticity in drosophila and mouse models of fragile X syndrome. J Neurosci. 2015;35:396–408.
pubmed: 25568131 pmcid: 4287155 doi: 10.1523/JNEUROSCI.1356-12.2015
Salcedo-Arellano MJ, et al. Overlapping molecular pathways leading to autism Spectrum disorders, fragile X syndrome, and targeted treatments. Neurotherapeutics. 2021;18:265–83.
pubmed: 33215285 doi: 10.1007/s13311-020-00968-6
Kalkman HO. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism. 2012;3:10.
pubmed: 23083465 pmcid: 3492093 doi: 10.1186/2040-2392-3-10
Franklin AV, et al. Glycogen synthase Kinase-3 inhibitors reverse deficits in long-term potentiation and cognition in fragile X mice. Biol Psychiatry. 2014;75:198–206.
pubmed: 24041505 doi: 10.1016/j.biopsych.2013.08.003
Mines MA, Yuskaitis CJ, King MK, Beurel E, Jope RS. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS One. 2010;5:e9706.
pubmed: 20300527 pmcid: 2838793 doi: 10.1371/journal.pone.0009706
Yuskaitis CJ, et al. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem Pharmacol. 2010;79:632–46.
pubmed: 19799873 pmcid: 2810609 doi: 10.1016/j.bcp.2009.09.023
Baranova J, et al. Autism spectrum disorder: signaling pathways and prospective therapeutic targets. Cell Mol Neurobiol. 2021;41:619–49.
pubmed: 32468442 doi: 10.1007/s10571-020-00882-7
Mines MA, Jope RS. Brain region differences in regulation of Akt and GSK3 by chronic stimulant administration in mice. Cell Signal. 2012;24:1398–405.
pubmed: 22434044 pmcid: 3335955 doi: 10.1016/j.cellsig.2012.03.001
Deng P-Y, Klyachko VA. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome. J Physiol. 2016;594:83–97.
pubmed: 26427907 doi: 10.1113/JP271031
Hébert B, et al. Rescue of fragile X syndrome phenotypes in Fmr1KO mice by a BKCa channel opener molecule. Orphanet J Rare Dis. 2014;9:124.
pubmed: 25079250 pmcid: 4237919 doi: 10.1186/s13023-014-0124-6
Berry-Kravis E, Potanos K. Psychopharmacology in fragile X syndrome?Present and future. Ment Retard Dev Disabil Res Rev. 2004;10:42–8.
pubmed: 14994287 doi: 10.1002/mrdd.20007
Sullivan K, et al. ADHD symptoms in children with FXS. Am J Med Genet Part A. 2006;140A:2275–88.
doi: 10.1002/ajmg.a.31388
Baumgardner TL, Reiss AL, Freund LS, Abrams MT. Specification of the neurobehavioral phenotype in males with fragile X syndrome. Pediatrics. 1995;95:744–52.
pubmed: 7724315 doi: 10.1542/peds.95.5.744
Roberts JE, et al. Treatment effects of stimulant medication in young boys with fragile X syndrome. J Neurodev Disord. 2011;3:175–84.
pubmed: 21671049 pmcid: 3261280 doi: 10.1007/s11689-011-9085-4
Hagerman RJ, Murphy MA, Wittenberger MD. A controlled trial of stimulant medication in children with the fragile X syndrome. Am J Med Genet. 1988;30:377–92.
pubmed: 3052064 doi: 10.1002/ajmg.1320300138
Hagerman RJ, et al. Influence of stimulants on electrodermal studies in fragile X syndrome. Microsc Res Tech. 2002;57:168–73.
pubmed: 12112453 doi: 10.1002/jemt.10067
Hagerman RJ, Riddle JE, Roberts LS, Breese K, Fulton M. Survey of the efficacy of clonidine in fragile X syndrome. Dev Brain Dysfunct. 1995;8:336–44.
Scahill L, et al. A placebo-controlled study of Guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. Am J Psychiatry. 2001;158:1067–74.
pubmed: 11431228 doi: 10.1176/appi.ajp.158.7.1067
Joseph A, et al. Comparative efficacy and safety of attention-deficit/hyperactivity disorder pharmacotherapies, including guanfacine extended release: a mixed treatment comparison. Eur Child Adolesc Psychiatry. 2017;26:875–97.
pubmed: 28258319 pmcid: 5532417 doi: 10.1007/s00787-017-0962-6
Hagerman RJ, et al. Advances in the treatment of fragile X syndrome. Pediatrics. 2009;123:378–90.
pubmed: 19117905 doi: 10.1542/peds.2008-0317
Valdovinos MG, Parsa RA, Alexander ML. Results of a nation-wide survey evaluating psychotropic medication use in fragile X syndrome. J Dev Phys Disabil. 2009;21:23–37.
doi: 10.1007/s10882-008-9123-7
Hanson AC, Hagerman RJ. Serotonin dysregulation in fragile X syndrome: implications for treatment. Intractable Rare Dis Res. 2014;3:110–7.
pubmed: 25606361 pmcid: 4298641 doi: 10.5582/irdr.2014.01027
Chugani DC, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol. 1999;45:287–95.
pubmed: 10072042 doi: 10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9
Oblak A, Gibbs TT, Blatt GJ. Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism. Autism Res. 2013;6:571–83.
pubmed: 23894004 doi: 10.1002/aur.1317
Boccuto L, et al. Decreased tryptophan metabolism in patients with autism spectrum disorders. Mol Autism. 2013;4:16.
pubmed: 23731516 pmcid: 3680090 doi: 10.1186/2040-2392-4-16
McDougle C. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry. 1996;53:993.
pubmed: 8911222 doi: 10.1001/archpsyc.1996.01830110029004
Song N-N, et al. Reducing central serotonin in adulthood promotes hippocampal neurogenesis. Sci Rep. 2016;6:20338.
pubmed: 26839004 pmcid: 4738271 doi: 10.1038/srep20338
Zhou C, et al. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One. 2017;12:e0172270.
pubmed: 28241064 pmcid: 5328267 doi: 10.1371/journal.pone.0172270
Winarni TI, Schneider A, Borodyanskara M, Hagerman RJ. Early intervention combined with targeted treatment promotes cognitive and behavioral improvements in young children with fragile X syndrome. Case Rep Genet. 2012;2012:1–4.
doi: 10.1155/2012/280813
Greiss Hess L, et al. A randomized, double-blind, placebo-controlled trial of low-dose sertraline in young children with fragile X syndrome. J Dev Behav Pediatr. 2016;37:619–28.
pubmed: 27560971 doi: 10.1097/DBP.0000000000000334
Potter LA, et al. A randomized controlled trial of sertraline in young children with autism spectrum disorder. Front Psych. 2019;10:810.
doi: 10.3389/fpsyt.2019.00810
Rajaratnam A, et al. Review of autism profiles and response to sertraline in fragile X syndrome-associated autism vs. non-syndromic autism; next steps for targeted treatment. Front Neurol. 2020;11:581429.
pubmed: 33193037 pmcid: 7661746 doi: 10.3389/fneur.2020.581429
Amaria RN, Billeisen LL, Hagerman RJ. Medication use in fragile X syndrome. Ment Heal Asp Dev Disabil. 2001;4:143–7.
Hagerman RJ, et al. A survey of fluoxetine therapy in fragile X syndrome. Dev Brain Dysfunct. 1994;7:155–64.
McCracken JT, et al. Risperidone in children with autism and serious behavioral problems. N Engl J Med. 2002;347:314–21.
pubmed: 12151468 doi: 10.1056/NEJMoa013171
Shea S, et al. Risperidone in the treatment of disruptive behavioral symptoms in children with autistic and other pervasive developmental disorders. Pediatrics. 2004;114:e634–41.
pubmed: 15492353 doi: 10.1542/peds.2003-0264-F
Nagaraj R, Singhi P, Malhi P. Risperidone in children with autism: randomized, placebo-controlled, double-blind study. J Child Neurol. 2006;21:450–5.
pubmed: 16948927 doi: 10.1177/08830738060210060801
Erickson CA, et al. A prospective open-label study of aripiprazole in fragile X syndrome. Psychopharmacology. 2011;216:85–90.
pubmed: 21318565 doi: 10.1007/s00213-011-2194-7
Dominick KC, et al. Risperidone treatment for irritability in fragile X syndrome. J Child Adolesc Psychopharmacol. 2018;28:274–8.
pubmed: 29394101 doi: 10.1089/cap.2017.0057
Ding Q, et al. Transcriptome signature analysis repurposes trifluoperazine for the treatment of fragile X syndrome in mouse model. Commun Biol. 2020;3:127.
pubmed: 32179850 pmcid: 7075969 doi: 10.1038/s42003-020-0833-4
Wang L, Liu Y, Li S, Long Z-Y, Wu Y-M. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells. Int J Clin Exp Pathol. 2015;8:578–85.
pubmed: 25755748 pmcid: 4348902
Xia M-Y, et al. Activation of Wnt/β-catenin signaling by lithium chloride attenuates <scp>d</scp> −galactose-induced neurodegeneration in the auditory cortex of a rat model of aging. FEBS Open Bio. 2017;7:759–76.
pubmed: 28593132 pmcid: 5458451 doi: 10.1002/2211-5463.12220
Liu Z-H, Huang T, Smith CB. Lithium reverses increased rates of cerebral protein synthesis in a mouse model of fragile X syndrome. Neurobiol Dis. 2012;45:1145–52.
pubmed: 22227453 doi: 10.1016/j.nbd.2011.12.037
Berry-Kravis E, et al. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J Dev Behav Pediatr. 2008;29:293–302.
pubmed: 18698192 doi: 10.1097/DBP.0b013e31817dc447
Berry-Kravis E, et al. A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J Med Genet. 2009;46:266–71.
pubmed: 19126569 doi: 10.1136/jmg.2008.063701
Hagerman R, et al. Mavoglurant in fragile X syndrome: results of two open-label, extension trials in adults and adolescents. Sci Rep. 2018;8:16970.
pubmed: 30451888 pmcid: 6242849 doi: 10.1038/s41598-018-34978-4
Berry-Kravis E, et al. Mavoglurant in fragile X syndrome: results of two randomized, double-blind, placebo-controlled trials. Sci Transl Med. 2016;8:321ra5.
pubmed: 26764156 doi: 10.1126/scitranslmed.aab4109
Youssef EA, et al. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled trial: FragXis phase 2 results. Neuropsychopharmacology. 2018;43:503–12.
pubmed: 28816242 doi: 10.1038/npp.2017.177
Pacey LKK, Heximer SP, Hampson DR. Increased GABA B receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Mol Pharmacol. 2009;76:18–24.
pubmed: 19351745 doi: 10.1124/mol.109.056127
Berry-Kravis EM, et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci Transl Med. 2012;4:152ra127.
pubmed: 22993294 doi: 10.1126/scitranslmed.3004214
Berry-Kravis E, et al. Arbaclofen in fragile X syndrome: results of phase 3 trials. J Neurodev Disord. 2017;9:3.
pubmed: 28616094 pmcid: 5467054 doi: 10.1186/s11689-016-9181-6
Ligsay A, et al. A randomized double-blind, placebo-controlled trial of ganaxolone in children and adolescents with fragile X syndrome. J Neurodev Disord. 2017;9:26.
pubmed: 28764646 pmcid: 5540519 doi: 10.1186/s11689-017-9207-8
Budimirovic DB, et al. Gaboxadol in fragile X syndrome: a 12-week randomized, double-blind, parallel-group, phase 2a study. Front Pharmacol. 2021;12:2762.
doi: 10.3389/fphar.2021.757825
Bickerdike MJ, et al. NNZ-2566: a Gly–Pro–Glu analogue with neuroprotective efficacy in a rat model of acute focal stroke. J Neurol Sci. 2009;278:85–90.
pubmed: 19157421 doi: 10.1016/j.jns.2008.12.003
Berry-Kravis E, et al. A double-blind, randomized, placebo-controlled clinical study of trofinetide in the treatment of fragile X syndrome. Pediatr Neurol. 2020;110:30–41.
pubmed: 32660869 doi: 10.1016/j.pediatrneurol.2020.04.019
Lee H, et al. Exome sequencing identifies PDE4D mutations in acrodysostosis. Am J Hum Genet. 2012;90:746–51.
pubmed: 22464252 pmcid: 3322224 doi: 10.1016/j.ajhg.2012.03.004
Wakabayashi Y, et al. Discovery, radiolabeling, and evaluation of subtype-selective inhibitors for positron emission tomography imaging of brain phosphodiesterase-4D. ACS Chem Neurosci. 2020;11:1311–23.
pubmed: 32212718 doi: 10.1021/acschemneuro.0c00077
Berry-Kravis EM, et al. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial. Nat Med. 2021;27:862–70.
pubmed: 33927413 doi: 10.1038/s41591-021-01321-w
Dziembowska M, et al. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am J Med Genet Part A. 2013;161:1897–903.
doi: 10.1002/ajmg.a.36023
Paribello C, et al. Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol. 2010;10:91.
pubmed: 20937127 pmcid: 2958860 doi: 10.1186/1471-2377-10-91
Leigh MJS, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J Dev Behav Pediatr. 2013;34:147–55.
pubmed: 23572165 pmcid: 3706260 doi: 10.1097/DBP.0b013e318287cd17
Biag HMB, et al. Metformin treatment in young children with fragile X syndrome. Mol Genet Genomic Med. 2019;7:e956.
pubmed: 31520524 pmcid: 6825840 doi: 10.1002/mgg3.956
Dy ABC, et al. Metformin as targeted treatment in fragile X syndrome. Clin Genet. 2018;93:216–22.
pubmed: 28436599 doi: 10.1111/cge.13039
Fleury-Teixeira P, Caixeta FV, Ramires da Silva LC, Brasil-Neto JP, Malcher-Lopes R. Effects of CBD-enriched cannabis sativa extract on autism spectrum disorder symptoms: an observational study of 18 participants undergoing compassionate use. Front Neurol. 2019;10:1145.
pubmed: 31736860 pmcid: 6834767 doi: 10.3389/fneur.2019.01145
Tartaglia N, Bonn-Miller M, Hagerman R. Treatment of fragile X syndrome with Cannabidiol: a case series study and brief review of the literature. Cannabis Cannabinoid Res. 2019;4:3–9.
pubmed: 30944868 pmcid: 6446166 doi: 10.1089/can.2018.0053
Heussler H, et al. A phase 1/2, open-label assessment of the safety, tolerability, and efficacy of transdermal cannabidiol (ZYN002) for the treatment of pediatric fragile X syndrome. J Neurodev Disord. 2019;11:16.
pubmed: 31370779 pmcid: 6676516 doi: 10.1186/s11689-019-9277-x
Palumbo J, et al. Reconnect (ZYN2-CL-033): design of a phase 3 trial of ZYN002 Cannabidiol transdermal gel in children and adolescents with fragile x syndrome based upon learnings from connect-FX (ZYN2-CL-016). J Am Acad Child Adolesc Psychiatry. 2021;60:S258.
Luu S, et al. Response to placebo in fragile X syndrome clinical trials: an initial analysis. Brain Sci. 2020;10:629.
pubmed: 32932789 pmcid: 7563217 doi: 10.3390/brainsci10090629
Curie A, et al. Placebo responses in genetically determined intellectual disability: a meta-analysis. PLoS One. 2015;10:e0133316.
pubmed: 26226597 pmcid: 4520690 doi: 10.1371/journal.pone.0133316
Duy PQ, Budimirovic DB. Fragile X syndrome: lessons learned from the most translated neurodevelopmental disorder in clinical trials. Transl Neurosci. 2017;8:7–8.
pubmed: 28400977 pmcid: 5382936 doi: 10.1515/tnsci-2017-0002
Díaz-Caneja C, et al. A white paper on a neurodevelopmental framework for drug discovery in autism and other neurodevelopmental disorders. Eur Neuropsychopharmacol. 2021;48:49–88.
pubmed: 33781629 doi: 10.1016/j.euroneuro.2021.02.020
Knoth IS, Lippé S. Event-related potential alterations in fragile X syndrome. Front Hum Neurosci. 2012;6:264.
pubmed: 23015788 pmcid: 3449440 doi: 10.3389/fnhum.2012.00264
Wang J, et al. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J Neurodev Disord. 2017;9:11.
pubmed: 28316753 pmcid: 5351111 doi: 10.1186/s11689-017-9191-z
Jonak CR, Lovelace JW, Ethell IM, Razak KA, Binder DK. Multielectrode array analysis of EEG biomarkers in a mouse model of fragile X syndrome. Neurobiol Dis. 2020;138:104794.
pubmed: 32036032 pmcid: 9038039 doi: 10.1016/j.nbd.2020.104794
Kozono N, Okamura A, Honda S, Matsumoto M, Mihara T. Gamma power abnormalities in a Fmr1-targeted transgenic rat model of fragile X syndrome. Sci Rep. 2020;10:18799.
pubmed: 33139785 pmcid: 7608556 doi: 10.1038/s41598-020-75893-x
Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011;22:133–9.
pubmed: 21435566 pmcid: 3073717 doi: 10.1016/j.nec.2010.11.001
Mody M, et al. In vivo imaging of mGlu5 receptor expression in humans with fragile X syndrome towards development of a potential biomarker. Sci Rep. 2021;11:15897.
pubmed: 34354107 pmcid: 8342610 doi: 10.1038/s41598-021-94967-y
Budimirovic DB, et al. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J Neurodev Disord. 2017;9:14.
pubmed: 28616097 pmcid: 5467057 doi: 10.1186/s11689-017-9193-x
Hessl D, et al. The NIH toolbox cognitive battery for intellectual disabilities: three preliminary studies and future directions. J Neurodev Disord. 2016;8:35.
pubmed: 27602170 pmcid: 5012003 doi: 10.1186/s11689-016-9167-4
Berry-Kravis E, et al. Development of an expressive language sampling procedure in fragile X syndrome. J Dev Behav Pediatr. 2013;34:245–51.
pubmed: 23669871 pmcid: 3654391 doi: 10.1097/DBP.0b013e31828742fc
Abbeduto L, et al. Expressive language sampling as a source of outcome measures for treatment studies in fragile X syndrome: feasibility, practice effects, test-retest reliability, and construct validity. J Neurodev Disord. 2020;12:10.
pubmed: 32204695 pmcid: 7092603 doi: 10.1186/s11689-020-09313-6
Taylor JL, Seltzer MM. Changes in the autism behavioral phenotype during the transition to adulthood. J Autism Dev Disord. 2010;40:1431–46.
pubmed: 20361245 pmcid: 2910794 doi: 10.1007/s10803-010-1005-z
Wilens TE, Spencer TJ. Understanding attention-deficit/hyperactivity disorder from childhood to adulthood. Postgrad Med. 2010;122:97–109.
pubmed: 20861593 pmcid: 3724232 doi: 10.3810/pgm.2010.09.2206
Lee M, Martin GE, Berry-Kravis E, Losh M. A developmental, longitudinal investigation of autism phenotypic profiles in fragile X syndrome. J Neurodev Disord. 2016;8:47.
pubmed: 28050218 pmcid: 5203725 doi: 10.1186/s11689-016-9179-0
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord. 2020;12:13.
pubmed: 32359368 pmcid: 7196229 doi: 10.1186/s11689-020-09310-9
Stoppel DC, McCamphill PK, Senter RK, Heynen AJ, Bear MF. mGluR5 negative modulators for fragile X: treatment resistance and persistence. Front Psych. 2021;12:718953.
doi: 10.3389/fpsyt.2021.718953
Wang L, Kempton JB, Brigande JV. Gene therapy in mouse models of deafness and balance dysfunction. Front Mol Neurosci. 2018;11:300.
pubmed: 30210291 pmcid: 6123355 doi: 10.3389/fnmol.2018.00300

Auteurs

Devon Johnson (D)

MIND Institute, University of California Davis Health, Sacramento, CA, USA.

Courtney Clark (C)

MIND Institute, University of California Davis Health, Sacramento, CA, USA.

Randi Hagerman (R)

MIND Institute, University of California Davis Health, Sacramento, CA, USA.
Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH