Preservation of active components in olive leaf extract by spray drying method in biodegradable polymers: Optimization, in vitro gastrointestinal digestion and application.
I-optimal design
arabic gum
maltodextrin
natural product waste
Journal
Phytochemical analysis : PCA
ISSN: 1099-1565
Titre abrégé: Phytochem Anal
Pays: England
ID NLM: 9200492
Informations de publication
Date de publication:
17 Mar 2023
17 Mar 2023
Historique:
revised:
26
02
2023
received:
04
02
2023
accepted:
28
02
2023
entrez:
17
3
2023
pubmed:
18
3
2023
medline:
18
3
2023
Statut:
aheadofprint
Résumé
Encapsulation of the bioactive ingredients in biodegradable and edible polymers is an alternative novel application method to keep these kind of natural products stable. The purpose is to optimize the encapsulation system of olive leaf extract by spray drying method, and to apply the products into a model food. Olive leaf extract was encapsulated in arabic gum/maltodextrin blend by spray drying method. Combined design approach under I-optimal design type was used to optimize the system. Characterisation studies under moisture content, water activity, solubility, bulk density, tapped density, Carr index, particle size distribution, powder morphology and glass transition temperature were applied to the microparticles obtained under optimum conditions. The bioavailability of the encapsulated active material was tested by in vitro gastrointestinal digestion. Furthermore, microparticles produced under optimum conditions were also evaluated for a potential functional food application. The optimum conditions were achieved by arabic gum/maltodextrin (3.7:6.3) with 10% (w/v) in the mixture of wall material and active material under 165.5°C to achieve maximum encapsulation efficiency (86.92%), encapsulation yield (71.32%) and antioxidant activity (5.74 mg Trolox equivalent antioxidant capacity/g dry microparticle). Olive leaf extract encapsulated in arabic gum/maltodextrin may be a good alternative additive to prevent the lipid oxidation in fat-containing food products as well as improvement of the product quality by functional properties.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Kesente M, Kavetsou E, Roussaki M, et al. Encapsulation of olive leaves extracts in biodegradable PLA nanoparticles for use in cosmetic formulation. Bioeng. 2017;4(3):75 Available from: https://www.mdpi.com/2306-5354/4/3/75/htm
Jiménez-Aguilar DM, Ortega-Regules AE, Lozada-Ramírez JD, Pérez-Pérez MCI, Vernon-Carter EJ, Welti-Chanes J. Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. J Food Compos Anal. 2011;24(6):889-894. doi:10.1016/j.jfca.2011.04.012
Baldino L, Della Porta G, Osseo LS, Reverchon E, Adami R. Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. J Supercrit Fluids. 2018;133:65-69. doi:10.1016/j.supflu.2017.09.026
Ghoreishi SM, Shahrestani GR, Ghaziaskar HS. Experimental and modeling investigation of supercritical extraction of mannitol from olive leaves. Chem Eng Technol. 2009;32(1):45-54. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ceat.200800441
Xynos N, Papaefstathiou G, Psychis M, Argyropoulou A, Aligiannis N, Skaltsounis AL. Development of a green extraction procedure with super/subcritical fluids to produce extracts enriched in oleuropein from olive leaves. J Supercrit Fluids. 2012;67:89-93. doi:10.1016/j.supflu.2012.03.014
Ghoreishi SM, Shahrestani RG. Subcritical water extraction of mannitol from olive leaves. J Food Eng. 2009;93(4):474-481. doi:10.1016/j.jfoodeng.2009.02.015
Xynos N, Papaefstathiou G, Gikas E, Argyropoulou A, Aligiannis N, Skaltsounis A-L. Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Sep Purif Technol. 2014;122:323-330. doi:10.1016/j.seppur.2013.10.040
Jaski JM, Barão CE, Morais Lião L, da Silva PV, Zanoelo EF, Cardozo-Filho L. β-Cyclodextrin complexation of extracts of olive leaves obtained by pressurized liquid extraction. Ind Crop Prod. 2019;129:662-672. doi:10.1016/j.indcrop.2018.12.045
Lama-Muñoz A, del Contreras MM, Espínola F, Moya M, Romero I, Castro E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: extraction with the Soxhlet method and pressurized liquids. Food Chem. 2020;320:126626. doi:10.1016/j.foodchem.2020.126626
da Silva PS, Viell FLG, Ineu RP, et al. Determination of an optimum extraction region for the recovery of bioactive compounds from olive leaves (Olea europaea L.) using green dynamic pressurized liquid extraction. Brazilian J Chem Eng. 2022;1-19. Available from: https://link.springer.com/article/10.1007/s43153-022-00268-w
da Rosa GS, Vanga SK, Gariepy Y, Raghavan V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innov Food Sci Emerg Technol. 2019;58:102234. doi:10.1016/j.ifset.2019.102234
Taamalli A, Arráez-Román D, Ibañez E, Zarrouk M, Segura-Carretero A, Fernández-Gutiérrez A. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS2. J Agric Food Chem. 2012;60(3):791-798. Available from: https://pubs.acs.org/doi/full/10.1021/jf204233u
Darvishzadeh P, Orsat V. Microwave-assisted extraction of antioxidant compounds from Russian olive leaves and flowers: optimization, HPLC characterization and comparison with other methods. J Appl Res Med Aromat Plants. 2022;27:100368. doi:10.1016/j.jarmap.2021.100368
Boli E, Prinos N, Louli V, et al. Recovery of bioactive extracts from olive leaves using conventional and microwave-assisted extraction with classical and deep eutectic solvents. Separations. 2022;9(9):255 Available from: https://www.mdpi.com/2297-8739/9/9/255/htm
Cifá D, Skrt M, Pittia P, Di Mattia C, Poklar Ulrih N. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci Nutr. 2018;6(4):1128-1137. Available from: http://doi.wiley.com/10.1002/fsn3.654
Irakli M, Chatzopoulou P, Ekateriniadou L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind Crop Prod. 2018;124:382-388. doi:10.1016/j.indcrop.2018.07.070
Lama-Muñoz A, Del Mar Contreras M, Espínola F, Moya M, Romero I, Castro E. Optimization of Oleuropein and Luteolin-7-O-glucoside extraction from olive leaves by ultrasound-assisted technology. Energies. 2019;12(13):2486 Available from: https://www.mdpi.com/1996-1073/12/13/2486/htm
Pappas VM, Lakka A, Palaiogiannis D, et al. Use of pulsed electric field as a low-temperature and high-performance “green” extraction technique for the recovery of high added value compounds from olive leaves. Beverages. 2021;7(3):45 Available from: https://www.mdpi.com/2306-5710/7/3/45/htm
Pappas VM, Lakka A, Palaiogiannis D, et al. Optimization of pulsed electric field as standalone “green” extraction procedure for the recovery of high value-added compounds from fresh olive leaves. Antioxidants. 2021;10(10):1554 Available from: https://www.mdpi.com/2076-3921/10/10/1554/htm
Žuntar I, Putnik P, Kovačević DB, et al. Phenolic and antioxidant analysis of olive leaves extracts (Olea europaea L.) obtained by high voltage electrical discharges (HVED). Foods. 2019;8(7):248 Available from: https://www.mdpi.com/2304-8158/8/7/248/htm
Favaro-Trindade CS, Santana AS, Monterrey-Quintero ES, Trindade MA, Netto FM. The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocoll. 2010;24(4):336-340. doi:10.1016/j.foodhyd.2009.10.012
González E, Gómez-Caravaca AM, Giménez B, et al. Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chem. 2019;279:40-48. doi:10.1016/j.foodchem.2018.11.127
Urzúa C, González E, Dueik V, Bouchon P, Giménez B, Robert P. Olive leaves extract encapsulated by spray-drying in vacuum fried starch-gluten doughs. Food Bioprod Process. 2017;106:171-180. doi:10.1016/j.fbp.2017.10.001
González E, Gómez-Caravaca AM, Giménez B, et al. Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chem. 2020;310:125976.
Dobrinčić A, Tuden L, Repajić M, et al. Microencapsulation of olive leaf extract by spray drying. Acta Aliment. 2020;49(4):475-482. Available from: https://akjournals.com/view/journals/066/49/4/article-p475.xml
Chemat F, Abert-Vian M, Fabiano-Tixier AS, et al. Green extraction of natural products. Origins, current status, and future challenges. In: TrAC - trends in analytical chemistry. Vol.118. Elsevier B.V; 2019:248-263. doi:10.1016/j.trac.2019.05.037
Valle JAB, de Valle RCSC, Bierhalz ACK, Bezerra FM, Hernandez AL, Lis Arias MJ. Chitosan microcapsules: methods of the production and use in the textile finishing. J Appl Polym Sci. 2021;138(21):50482 Available from: https://onlinelibrary.wiley.com/doi/10.1002/app.50482
Toprakçı İ, Şahin S. Encapsulation of olive leaf antioxidants in microbeads: application of alginate and chitosan as wall materials. Sustain Chem Pharm. 2022;27:100707.
Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M, Knez Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005;89(2):191-198. doi:10.1016/j.foodchem.2004.02.025
Tolun A, Altintas Z, Artik N. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: development and characterization. J Biotechnol. 2016;239:23-33.
Balci-Torun F, Ozdemir F. Encapsulation of strawberry flavour and physicochemical characterization of the encapsulated powders. Powder Technol. 2021;380:602-612.
Beristain CI, García HS, Vernon-Carter EJ. Spray-dried encapsulation of cardamom (Elettaria cardamomum) essential oil with Mesquite (Prosopis juliflora) gum. LWT- Food Sci Technol. 2001;34(6):398-401. doi:10.1006/fstl.2001.0779
Şahin-Nadeem H, Dinçer C, Torun M, Topuz A, özdemir F. Influence of inlet air temperature and carrier material on the production of instant soluble sage (Salvia fruticosa miller) by spray drying. LWT - Food Sci Technol. 2013;52(1):31-38. doi:10.1016/j.lwt.2013.01.007
Asik S, Atbakan Kalkan T, Topuz A. Optimization of spray drying condition and wall material composition for myrtle extract powder using response surface methodology. Drying Technol. 2021;39(12):1869-1882. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=ldrt20
Zhang L, Kosaraju SL. Biopolymeric delivery system for controlled release of polyphenolic antioxidants. Eur Polym J. 2007;43(7):2956-2966. doi:10.1016/j.eurpolymj.2007.04.033
Gülmez Ö, Şahin S. Evaluation of oxidative stability in hazelnut oil treated with several antioxidants: kinetics and thermodynamics studies. LWT. 2019;111:478-483. https://doi.org/10.1016/j.lwt.2019.05.077
Ganje M, Jafari SM, Dusti A, Dehnad D, Amanjani M, Ghanbari V. Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing. Food Bioprod Process. 2016;97:12-19. doi:10.1016/j.fbp.2015.10.002
Kiritsakis K, Goula AM, Adamopoulos KG, Gerasopoulos D. Valorization of olive leaves: spray drying of olive leaf extract. Waste Biomass Valorization. 2018;9(4):619-633. doi:10.1007/s12649-017-0023-x
Kosaraju SL, D'ath L, Lawrence A. Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydr Polym. 2006;64(2):163-167. doi:10.1016/j.carbpol.2005.11.027
Bayraktar O, Deniz Köse M, Baspinar Y. Development of olive leaf extract loaded fibroin microparticles by spray drying. 2019. Available from: www.discoveryjournals.org
Tan SP, Kha TC, Parks SE, Stathopoulos CE, Roach PD. Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technol. 2015;(281):65-75. doi:10.1016/j.powtec.2015.04.074
Alves SF, Borges LL, dos Santos TO, de Paula JR, Conceição EC, Bara MTF. Microencapsulation of essential oil from fruits of Pterodon emarginatus using gum Arabic and maltodextrin as wall materials: composition and stability. Drying Technol. 32(1):96-105. Available from: https://www.tandfonline.com/doi/abs/10.1080/07373937.2013.816315
Akhavan Mahdavi S, Jafari SM, Assadpoor E, Dehnad D. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int J Biol Macromol. 2016;385:379-385.
Becerra M, Goos P. Bayesian I-optimal designs for choice experiments with mixtures. Chemom Intel Lab Syst. 2021;217:104395. doi:10.1016/j.chemolab.2021.104395
Velazquez-Martinez V, Valles-Rosales D, Rodriguez-Uribe L, et al. Antimicrobial, shelf-life stability, and effect of maltodextrin and gum Arabic on the encapsulation efficiency of sugarcane bagasse bioactive compounds. Foods. 2021;10(1):116 Available from: https://www.mdpi.com/2304-8158/10/1/116/htm
Yousefi S, Kavyanirad M, Aminifar M, Weisany W, Mousavi KA. Yogurt fortification by microencapsulation of beetroot extract (Beta vulgaris L.) using maltodextrin, gum arabic, and whey protein isolate. Food Sci Nutr. 2022;10(6):1875-1887. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/fsn3.2804
Sablania V, Bosco SJD. Optimization of spray drying parameters for Murraya koenigii (Linn) leaves extract using response surface methodology. Powder Technol. 2018;335:35-41. doi:10.1016/j.powtec.2018.05.009
Konar N, Durmaz Y, Genc Polat D, Mert B. Optimization of spray drying for Chlorella vulgaris by using RSM methodology and maltodextrin. J Food Process Preserv. 2022;46(5):e16594 Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jfpp.16594
Mehran M, Masoum S, Memarzadeh M. Microencapsulation of Mentha spicata essential oil by spray drying: optimization, characterization, release kinetics of essential oil from microcapsules in food models. Ind Crop Prod. 2020;154:112694. doi:10.1016/j.indcrop.2020.112694
Kartika Pratami D, Mun A, Hermansyah H, Gozan M, Sahlan M. Microencapsulation optimization of propolis ethanolic extract from Tetragonula spp using response surface methodology. Int J App Pharm. 2020;12:197-206. doi:10.22159/ijap.2020v12i4.37808. Available from: http://creativecommons.org/licenses/by/4.0/
Jha AK, Sit N. Comparison of response surface methodology (RSM) and artificial neural network (ANN) modelling for supercritical fluid extraction of phytochemicals from Terminalia chebula pulp and optimization using RSM coupled with desirability function (DF) and genetic algorithm (GA) and ANN with GA. Ind Crop Prod. 2021;170:113769.
Tontul I, Topuz A. Spray-drying of fruit and vegetable juices: effect of drying conditions on the product yield and physical properties. Trends Food Sci Technol. 2017;63:91-102. doi:10.1016/j.tifs.2017.03.009
Jedlińska A, Samborska K, Janiszewska-Turak E, Witrowa-Rajchert D, Seuvre AM, Voilley A. Physicochemical properties of vanilla and raspberry aromas microencapsulated in the industrial conditions by spray drying. J Food Process Eng. 2018;41(7):e12872 Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jfpe.12872
Carr RL Jr. Evaluating flow properties of solids. Chem Eng. 1965;18:163-168. Available from: https://cir.nii.ac.jp/crid/1571135650278382592
Tonon RV, Freitas SS, Hubinger MD. Spray drying of AÇAI (EUTERPE OLERACEAE mart.) juice: effect of inlet air temperature and type of carrier agent. J Food Process Preserv. 2011;35(5):691-700. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1745-4549.2011.00518.x
Obón JM, Castellar MR, Alacid M, Fernández-López JA. Production of a red-purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. J Food Eng. 2009;90(4):471-479. doi:10.1016/j.jfoodeng.2008.07.013
Li Y, Tang B, Chen J, Lai P. Microencapsulation of plum (Prunus salicina Lindl.) phenolics by spray drying technology and storage stability. Food Sci Technol. 2017;38(3):530-536. Available from: http://www.scielo.br/j/cta/a/JJXGxMRW965DWQbwF4NjsWh/abstract/?lang=en
Silva VM, Vieira GS, Hubinger MD. Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Res Int. 2014;61:132-143. doi:10.1016/j.foodres.2014.01.052
Vulić J, Šeregelj V, Kalušević A, et al. Bioavailability and bioactivity of encapsulated Phenolics and carotenoids isolated from red pepper waste. Molecules. 2019;24(15):2837 Available from: https://www.mdpi.com/1420-3049/24/15/2837/htm
Ydjedd S, Bouriche S, López-Nicolás R, et al. Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity. J Agric Food Chem. 2017;65(4):827-835. Available from: https://pubs.acs.org/doi/abs/10.1021/acs.jafc.6b05103
Zheng L, Ding Z, Zhang M, Sun J. Microencapsulation of bayberry polyphenols by ethyl cellulose: preparation and characterisation. J Food Eng. 2011;104(1):89-95. doi:10.1016/j.jfoodeng.2010.11.031