Transcriptomes reveal microRNAs and mRNAs in different photoperiods influencing cashmere growth in goat.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2023
2023
Historique:
received:
25
04
2022
accepted:
22
02
2023
entrez:
17
3
2023
pubmed:
18
3
2023
medline:
22
3
2023
Statut:
epublish
Résumé
Cashmere goat has a typical characteristic in seasonal growth of cashmere. Studies have shown that one of the main factors affecting the cyclical growth of the cashmere is the photoperiod, however, its molecular mechanism remains unclear. Inner Mongolia Arbas cashmere goat was used to reveal the mRNA-microRNA regulatory mechanisms of cashmere growth in different photoperiod. Skin samples from cashmere goats under light control (short photoperiod) and normal conditions (long photoperiod) were collected. Sequencing was performed after RNA extraction. The differentially expressed miRNA and mRNA expression profiles were successfully constructed. We found 56 significantly differentially expressed known mRNAs (P<0.01) and 14 microRNAs (P<0.05). The association analysis of the microRNAs and mRNAs showed that two differentially expressed miRNAs might be targeted by six differentially expressed genes. Targeting relationships of these genes and miRNAs are revealed and verified. In all, the light control technology provides a new way to promote cashmere growth. Our results provide some references in the cashmere growth and development.
Identifiants
pubmed: 36930617
doi: 10.1371/journal.pone.0282772
pii: PONE-D-22-12093
pmc: PMC10022811
doi:
Substances chimiques
MicroRNAs
0
RNA, Messenger
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0282772Informations de copyright
Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Methods. 2008 Jan;44(1):3-12
pubmed: 18158127
Genome Biol. 2009;10(3):R25
pubmed: 19261174
Ophthalmic Genet. 2020 Aug;41(4):381-385
pubmed: 32506993
Theory Biosci. 2012 Dec;131(4):281-5
pubmed: 22872506
J Cosmet Dermatol. 2020 Apr;19(4):789-798
pubmed: 31697031
J Mol Neurosci. 2022 Mar;72(3):555-564
pubmed: 34554397
Clin Infect Dis. 2021 Nov 16;73(10):1860-1870
pubmed: 33693626
Sci Rep. 2017 Nov 9;7(1):15142
pubmed: 29123196
Bioinformatics. 2009 May 1;25(9):1105-11
pubmed: 19289445
Bioinformatics. 2010 Jan 1;26(1):136-8
pubmed: 19855105
BMC Med Genomics. 2020 Oct 22;13(Suppl 10):148
pubmed: 33087122
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):E2106-15
pubmed: 23690597
Front Genet. 2021 Jul 09;12:665834
pubmed: 34306011
OMICS. 2007 Winter;11(4):385-96
pubmed: 18092910
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
J Endocrinol. 2006 Nov;191(2):415-25
pubmed: 17088411
J Invest Dermatol. 2014 Mar;134(3):610-619
pubmed: 24005054
J Pineal Res. 2019 Aug;67(1):e12569
pubmed: 30861591
Neurobiol Aging. 2022 Jan;109:269-272
pubmed: 34531044
Open Life Sci. 2018 Apr 10;13:90-96
pubmed: 33817073
Front Genet. 2018 Jul 04;9:233
pubmed: 30022999
BMC Res Notes. 2017 Nov 7;10(1):573
pubmed: 29116018
Dermatol Ther. 2008 Sep-Oct;21(5):314-28
pubmed: 18844710
Mol Ther. 2018 Sep 5;26(9):2178-2188
pubmed: 29802017
Cancer Cell Int. 2021 Nov 4;21(1):590
pubmed: 34736454
Cell Cycle. 2018;17(10):1255-1267
pubmed: 29895193
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2514-E2523
pubmed: 28270617
PLoS One. 2016 Jan 27;11(1):e0147124
pubmed: 26814503
Domest Anim Endocrinol. 2021 Jan;74:106534
pubmed: 32861956
Front Cell Dev Biol. 2021 Jun 04;9:686805
pubmed: 34150780