Near-Infrared Trapping by Surface Plasmons in Randomized Platinum-Ceramic Metamaterial for Thermal Barrier Coatings.

ceramics gas turbines thermal barrier coatings thermal conductivity thermal radiation

Journal

Small methods
ISSN: 2366-9608
Titre abrégé: Small Methods
Pays: Germany
ID NLM: 101724536

Informations de publication

Date de publication:
Jun 2023
Historique:
revised: 09 02 2023
received: 25 12 2022
medline: 19 3 2023
pubmed: 19 3 2023
entrez: 18 3 2023
Statut: ppublish

Résumé

As the operation temperature of next generation gas turbine is targeted to be 1800 °C toward a higher efficiency and lower carbon emission, the near-infrared (NIR) thermal radiation becomes a major concern for the durability of the metallic turbine blades. Although thermal barrier coatings (TBCs) are applied to provide thermal insulations, they are translucent to the NIR radiation. It is a major challenge for TBCs to achieve optically thick with limited physical thickness (usually < 1 mm) for effectively shielding the NIR radiation damage. Here, an NIR metamaterial is reported, where a Gd

Identifiants

pubmed: 36932890
doi: 10.1002/smtd.202201691
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2201691

Subventions

Organisme : National Natural Science Foundation of China
ID : 52022042
Organisme : National Natural Science Foundation of China
ID : 51590893
Organisme : National Key R&D Program of China
ID : 2021YFB3702301
Organisme : National Science and Technology Major Project
ID : J2019-VII-0008-0148

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

ARPA-E, Ultrahigh Temperature Impervious Materials Advancing Turbine Efficiency, 2020. https://arpa-e.energy.gov/technologies/programs/ultimate. (accessed: November 2022).
N. P. Padture, Nat. Mater. 2016, 15, 804.
M. Dai, X. Song, C. Lin, Z. Liu, W. Zheng, Y.i Zeng, J. Adv. Ceram. 2022, 11, 345.
Q. Flamant, D. R. Clarke, Scr. Mater. 2019, 173, 26.
Z.-Y. Wei, G.-H. Meng, L. Chen, G.-R. Li, M.-J. Liu, W.-X.u Zhang, L.i-N.a Zhao, Q. Zhang, X.-D. Zhang, C.-L. Wan, Z.-X. Qu, L. Chen, J. Feng, L. Liu, H. Dong, Z.e-B. Bao, X.-F. Zhao, X.-F. Zhang, L. Guo, L. Wang, B.o Cheng, W.-W. Zhang, P.-Y. Xu, G.-J. Yang, H.-N. Cai, H. Cui, Y. Wang, F.u-X. Ye, Z. Ma, W. Pan, et al., J. Adv. Ceram. 2022, 11, 985.
D. R. Clarke, C. G. Levi, Annu. Rev. Mater. Res. 2003, 33, 383.
G. Yang, C. Y. Zhao, B. X. Wang, Int. J. Heat Mass Transfer 2013, 66, 695.
J. Yan, X. Wang, K. Chen, K. N. Lee, Coatings 2021, 11, 1214.
M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, R. Miller, Int. J. Appl. Ceram. Technol. 2006, 3, 81.
D. Wang, X. Huang, P. Patnaik, 25th Int. Congr. of the Aeronautical Sciences, Optimage Ltd., Hamburg, Germany 2006.
G. Christidis, U. Koch, E. Poloni, E. D.e Leo, B. Cheng, S. M. Koepfli, A. Dorodnyy, F. Bouville, Y. Fedoryshyn, V. Shklover, J. Leuthold, ACS Appl. Mater. Interfaces 2020, 12, 9925.
M. Huang, J. Liang, P. Zhang, Y.i Li, Y.i Han, Z. Yang, W. Pan, C. Wan, J. Mater. Sci. Technol. 2022, 100, 67.
L. A. Dombrovsky, Proc. of CHT-12. ICHMT Int. Symp. on Advances in Computational Heat Transfer, Begel House Inc., Bath, England 2012.
M. F. Modest, S. Mazumder, Radiative Heat Transfer, Academic press, Cambridge, MA 2021.
D. Song, M. Ryu, J. Kwon, G. Lyu, J. Kim, H.-B. Jeon, T. Song, U. Paik, B.-I.l Yang, Y.-G. Jung, Y.-S. Oh, Ceram. Int. 2021, 47, 33544.
T. Li, Z. Ma, L. Liu, S. Z. Zhu, Ceram. Int. 2014, 40, 11423.
X. Ma, P. Ruggiero, G. Wildridge, J. Therm. Spray Technol. 2022, https://doi.org/10.1007/s11666-022-01474-1.
T. J. Cui, D. R. Smith, R. Liu, Metamaterials, Springer, Berlin 2010.
S. Yang, J. Wang, G. Dai, F. Yang, J. Huang, Phys. Rep. 2021, 908, 1.
J.-P. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials, Springer Nature, Berlin 2019.
Y. Li, X. Bai, T. Yang, H. Luo, C.-W. Qiu, Nat. Commun. 2018, 9, 273.
K. W. Lee, W. Lim, M. S. Jeon, H. Jang, J. Hwang, C. H. Lee, D. R. Kim, Adv. Funct. Mater. 2022, 32, 2105882.
L. Xu, G. Xu, J. Huang, C.-W. Qiu, Phys. Rev. Lett. 2022, 128, 145901.
S. Kunwar, M. Sui, P. Pandey, Z. Gu, S. Pandit, J. Lee, Sci. Rep. 2019, 9, 1329.
M. Sui, S. Kunwar, P. Pandey, J. Lee, Sci. Rep. 2019, 9, 16582.
E. Petryayeva, U. J. Krull, Anal. Chim. Acta 2011, 706, 8.
Y. Verde-Gómez, G. Alonso-Nuñez, F. Cervantes, A. Keer, Mater. Lett. 2003, 57, 4667.
K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B 2003, 107, 668.
W. Haiss, N. T. K. Thanh, J. Aveyard, D. G. Fernig, Anal. Chem. 2007, 79, 4215.
J. Wang, H. Fang, X. Wang, X. Chen, W. Lu, W. Hu, Small 2017, 13, 1700894.
C. Zhan, Q.-X. Wang, J. Yi, L. Chen, D.e-Y. Wu, Y.e Wang, Z.-X. Xie, M. Moskovits, Z.-Q. Tian, Sci. Adv. 2021, 7, eabf0962.
T. Zhao, D. Meng, Z. Hu, W. Sun, Y. Ji, J. Han, X. Jin, X. Wu, P. Duan, Nat. Commun. 2023, 14, 81.
H. Qian, S. Li, S.u-W. Hsu, C.-F.u Chen, F. Tian, A. R. Tao, Z. Liu, Nat. Commun. 2021, 12, 3111.
H. Wei, Z. Tang, Y. Shen, H. Zheng, Y. Wang, R. Wang, H. Zhu, S. Su, Y. Zhu, J. Zhou, Z. R. Qiu, J. Phys. D: Appl. Phys. 2022, 55, 305103.
Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Science 2017, 355, 1062.
W. Hergert, T. Wriedt, The Mie Theory: Basics and Applications, Vol. 169, Springer, Berlin 2012.
P. Laven, A Computer Program for Scattering of Light from a Sphere Using Mie Theory and the Debye Series, 2021, http://www.philiplaven.com/mieplot.htm. (accessed: June 2022).
A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski, Appl. Opt. 1998, 37, 5271.
T. Jensen, L. Kelly, A. Lazarides, G. C. Schatz, J. Cluster Sci. 1999, 10, 295.
R. Bukasov, J. S. Shumaker-Parry, Nano Lett. 2007, 7, 1113.
M. S. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M. J. Nine, A. Dinovitser, C. M. B. Cordeiro, B. W.-H. Ng, D. Abbott, Carbon 2020, 158, 559.
S. Akamine, M. Fujita, J. Eur. Ceram. Soc. 2014, 34, 4031.
B. Maheu, J. N. Letoulouzan, G. Gouesbet, Appl. Opt. 1984, 23, 3353.
J. I. Eldridge, C. M. Spuckler, J. R. Markham, J. Am. Ceram. Soc. 2009, 92, 2276.
C. Park, J. Quant. Spectrosc. Radiat. Transfer 2015, 154, 44.
J. Yang, C. Wan, M. Zhao, M. Shahid, W. Pan, J. Eur. Ceram. Soc. 2016, 36, 3809.
C. Ren, C. Li, H. Guo, H. Wang, Z. Bai, Y. Ma, Ceram. Int. 2022, 48, 16432.
H. S. Aziz, M. Huang, Z. Li, C. Wan, W. Pan, J. Am. Ceram. Soc. 2022, 105, 3485.
Y. Liang, Y. Che, X. Liu, N. Li, Manual of Practical Inorganic Matter Thermodynamics, Northeastern University Press, Shenyang, China 1993.

Auteurs

Zesheng Yang (Z)

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.

Muzhang Huang (M)

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.

Ronggui Yang (R)

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.

Jingbo Sun (J)

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.

Xuefei Zhang (X)

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.

Wei Pan (W)

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.

Chunlei Wan (C)

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.

Classifications MeSH