Numerical approach to investigate MR imaging artifacts from orthopedic implants at different field strengths according to ASTM F2119.
Artifacts
Human model artifact simulation
Magnetic field strength
Metallic implants
Numeric simulations
Orthopedic implants
Journal
Magma (New York, N.Y.)
ISSN: 1352-8661
Titre abrégé: MAGMA
Pays: Germany
ID NLM: 9310752
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
26
07
2022
accepted:
26
02
2023
revised:
24
02
2023
medline:
18
9
2023
pubmed:
19
3
2023
entrez:
18
3
2023
Statut:
ppublish
Résumé
This study presents an extended evaluation of a numerical approach to simulate artifacts of metallic implants in an MR environment. The numerical approach is validated by comparing the artifact shape of the simulations and measurements of two metallic orthopedic implants at three different field strengths (1.5 T, 3 T, and 7 T). Furthermore, this study presents three additional use cases of the numerical simulation. The first one shows how numerical simulations can improve the artifact size evaluation according to ASTM F2119. The second use case quantifies the influence of different imaging parameters (TE and bandwidth) on the artifact size. Finally, the third use case shows the potential of performing human model artifact simulations. The numerical simulation approach shows a dice similarity coefficient of 0.74 between simulated and measured artifact sizes of metallic implants. The alternative artifact size calculation method presented in this study shows that the artifact size of the ASTM-based method is up to 50% smaller for complex shaped implants compared to the numerical-based approach. In conclusion, the numerical approach could be used in the future to extend MR safety testing according to a revision of the ASTM F2119 standard and for design optimization during the development process of implants.
Identifiants
pubmed: 36933090
doi: 10.1007/s10334-023-01074-2
pii: 10.1007/s10334-023-01074-2
pmc: PMC10504103
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
725-735Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : 432657511
Informations de copyright
© 2023. The Author(s).
Références
Koff MF, Burge AJ, Koch KM et al (2017) Imaging near orthopedic hardware. J Magn Reson Imaging 46:24–39. https://doi.org/10.1002/jmri.25577
doi: 10.1002/jmri.25577
pubmed: 28152257
pmcid: 5464983
ASTM F2503 (2020) Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment. ASTM International, West Conshohocken, PA. www.astm.org . Accessed 3 Dec 2021
Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850. https://doi.org/10.1118/1.597854
doi: 10.1118/1.597854
pubmed: 8798169
Peschke E, Ulloa P, Jansen O et al (2021) Metallische implantate im MRT—Gefahren und bildartefakte (metallic implants in MRI—hazards and imaging artifacts). Rofo 193:1285–1293. https://doi.org/10.1055/a-1460-8566
doi: 10.1055/a-1460-8566
pubmed: 33979870
Lee M-J, Kim S, Lee S-A et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27:791–803. https://doi.org/10.1148/rg.273065087
doi: 10.1148/rg.273065087
pubmed: 17495293
Cyteval C, Bourdon A (2012) Imaging orthopedic implant infections. Diagn Interv Imaging 93:547–557. https://doi.org/10.1016/j.diii.2012.03.004
doi: 10.1016/j.diii.2012.03.004
pubmed: 22521777
ASTM F2119 (2013) Test Method for Evaluation of MR Image Artifacts from Passive Implants. ASTM International, West Conshohocken, PA. www.astm.org . Accessed 21 July 2020
Spronk T, Kraff O, Kreutner J et al (2021) Development and evaluation of a numerical simulation approach to predict metal artifacts from passive implants in MRI. Magn Reson Mater Phy. https://doi.org/10.1007/s10334-021-00966-5
doi: 10.1007/s10334-021-00966-5
Port JD, Pomper MG (2000) Quantification and minimization of magnetic susceptibility artifacts on GRE images. J Comput Assist Tomogr 24:958–964. https://doi.org/10.1097/00004728-200011000-00024
doi: 10.1097/00004728-200011000-00024
pubmed: 11105718
Gach HM (2019) Technical Note: T1 and T2 and complex permittivities of mineral oil, silicone oil, and glycerol at 0.35, 1.5, and 3 T. Med Phys 46:1785–1792. https://doi.org/10.1002/mp.13429
doi: 10.1002/mp.13429
pubmed: 30723933
Spronk T, Kraff O, Kreutner J et al. (2019) Suitability analysis of different phantom fluids for MR image artifact measurements with a 7 T MR system. 36th Annual Scientific Meeting of ESMRMB, Rotterdam, Netherlands. Abstract: L02.08
Sorensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab Biol Skr 5:1–34
Zijdenbos AP, Dawant BM, Margolin RA et al (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 13:716–724. https://doi.org/10.1109/42.363096
doi: 10.1109/42.363096
pubmed: 18218550
Zou KH, Warfield SK, Bharatha A et al (2004) Statistical validation of image segmentation quality based on a spatial overlap index1. Acad Radiol 11:178–189. https://doi.org/10.1016/S1076-6332(03)00671-8
doi: 10.1016/S1076-6332(03)00671-8
pubmed: 14974593
pmcid: 1415224
Gosselin M-C, Neufeld E, Moser H et al (2014) Development of a new generation of high-resolution anatomical models for medical device evaluation: the virtual population 3.0. Phys Med Biol 59:5287–5303. https://doi.org/10.1088/0031-9155/59/18/5287
doi: 10.1088/0031-9155/59/18/5287
pubmed: 25144615
Chiba Y, Murakami H, Sasaki M et al (2019) Quantification of metal-induced susceptibility artifacts associated with ultrahigh-field magnetic resonance imaging of spinal implants. JOR Spine 2:e1064. https://doi.org/10.1002/jsp2.1064
doi: 10.1002/jsp2.1064
pubmed: 31572981
pmcid: 6764786
Matsuura H, Inoue T, Ogasawara K et al (2005) Quantitative analysis of magnetic resonance imaging susceptibility artifacts caused by neurosurgical biomaterials: comparison of 0.5, 1.5, and 3.0 Tesla magnetic fields. Neurol Med Chir (Tokyo) 45:395–398. https://doi.org/10.2176/nmc.45.395 . (Discussion 398–9)
doi: 10.2176/nmc.45.395
pubmed: 16127256
Venook RD, Matter NI, Ramachandran M et al (2006) Prepolarized magnetic resonance imaging around metal orthopedic implants. Magn Reson Med 56:177–186. https://doi.org/10.1002/mrm.20927
doi: 10.1002/mrm.20927
pubmed: 16724303
Spronk T, Chinnaiyan A, Kreutner J et al. (2018) Validation of numerical simulation of susceptibility artifacts and the consequences for artifact size calculation of the current ASTM standard F2119. 27th Annual Meeting of ISMRM, France, Paris. Abstract: 4402
de Guio F, Benoit-Cattin H, Davenel A (2008) Signal decay due to susceptibility-induced intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments. MAGMA 21:261–271. https://doi.org/10.1007/s10334-008-0119-1
doi: 10.1007/s10334-008-0119-1
pubmed: 18575911
Ladd ME, Erhart P, Debatin JF et al (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36:646–651. https://doi.org/10.1002/mrm.1910360423
doi: 10.1002/mrm.1910360423
pubmed: 8892221
Stanescu T, Wachowicz K, Jaffray DA (2012) Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT. Med Phys 39:7185–7193. https://doi.org/10.1118/1.4764481
doi: 10.1118/1.4764481
pubmed: 23231269
Bojorquez JZ, Bricq S, Acquitter C et al (2017) What are normal relaxation times of tissues at 3 T? Magn Reson Imaging 35:69–80. https://doi.org/10.1016/j.mri.2016.08.021
doi: 10.1016/j.mri.2016.08.021
pubmed: 27594531
Stanisz GJ, Odrobina EE, Pun J et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512. https://doi.org/10.1002/mrm.20605
doi: 10.1002/mrm.20605
pubmed: 16086319