Dissociation between phase and power correlation networks in the human brain is driven by co-occurrent bursts.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
18 03 2023
18 03 2023
Historique:
received:
16
08
2022
accepted:
02
03
2023
entrez:
19
3
2023
pubmed:
20
3
2023
medline:
22
3
2023
Statut:
epublish
Résumé
Well-known haemodynamic resting-state networks are better mirrored in power correlation networks than phase coupling networks in electrophysiological data. However, what do these power correlation networks reflect? We address this long-outstanding question in neuroscience using rigorous mathematical analysis, biophysical simulations with ground truth and application of these mathematical concepts to empirical magnetoencephalography (MEG) data. Our mathematical derivations show that for two non-Gaussian electrophysiological signals, their power correlation depends on their coherence, cokurtosis and conjugate-coherence. Only coherence and cokurtosis contribute to power correlation networks in MEG data, but cokurtosis is less affected by artefactual signal leakage and better mirrors haemodynamic resting-state networks. Simulations and MEG data show that cokurtosis may reflect co-occurrent bursting events. Our findings shed light on the origin of the complementary nature of power correlation networks to phase coupling networks and suggests that the origin of resting-state networks is partly reflected in co-occurent bursts in neuronal activity.
Identifiants
pubmed: 36934153
doi: 10.1038/s42003-023-04648-x
pii: 10.1038/s42003-023-04648-x
pmc: PMC10024695
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
286Informations de copyright
© 2023. The Author(s).
Références
Nat Rev Neurosci. 2012 Jan 11;13(2):121-34
pubmed: 22233726
Hum Brain Mapp. 2016 Nov;37(11):4099-4111
pubmed: 27347668
Elife. 2014 Mar 25;3:e01867
pubmed: 24668169
Neuroimage. 2011 Jun 1;56(3):1082-104
pubmed: 21352925
Elife. 2017 Nov 06;6:
pubmed: 29106374
Curr Biol. 2015 May 18;25(10):1368-74
pubmed: 25936551
Trends Cogn Sci. 2020 Oct;24(10):784-788
pubmed: 32828692
Neuroimage. 2017 May 15;152:538-550
pubmed: 28315461
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041924
pubmed: 12005890
Neuroimage. 2016 Sep;138:284-293
pubmed: 27262239
Neuron. 2016 Apr 6;90(1):152-164
pubmed: 26996084
Prog Neurobiol. 2005 Sep-Oct;77(1-2):1-37
pubmed: 16289760
Hum Brain Mapp. 2017 Sep;38(9):4631-4643
pubmed: 28631281
Neuroimage. 2014 Aug 15;97:296-307
pubmed: 24769185
Neuroimage. 2020 Apr 1;209:116538
pubmed: 31935522
Curr Biol. 2021 Oct 25;31(20):4436-4448.e5
pubmed: 34437842
Curr Opin Neurobiol. 2019 Oct;58:61-69
pubmed: 31336326
Neuroimage. 2013 Oct 15;80:190-201
pubmed: 23702419
Front Neurosci. 2019 Oct 23;13:1136
pubmed: 31708731
Neuroimage. 2011 Apr 15;55(4):1548-65
pubmed: 21276857
Neuroimage. 2020 Feb 15;207:116390
pubmed: 31785420
Curr Opin Neurobiol. 2016 Oct;40:72-80
pubmed: 27400290
Cereb Cortex. 2019 Apr 1;29(4):1496-1508
pubmed: 29522092
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903
pubmed: 11308514
Comput Intell Neurosci. 2011;2011:156869
pubmed: 21253357
Front Neurosci. 2020 Nov 10;14:577574
pubmed: 33240037
Front Syst Neurosci. 2016 Jan 08;9:175
pubmed: 26778976
Clin Neurophysiol. 2004 Oct;115(10):2292-307
pubmed: 15351371
Hippocampus. 2012 Jun;22(6):1417-28
pubmed: 21997899
Neuroimage. 2013 Oct 15;80:62-79
pubmed: 23684880
Neuroimage. 2013 Oct 15;80:105-24
pubmed: 23668970
Neuroimage. 2021 Dec 15;245:118630
pubmed: 34644593
Neuron. 2013 Nov 20;80(4):867-86
pubmed: 24267648
Neuron. 2012 May 24;74(4):753-64
pubmed: 22632732
Neuroradiol J. 2017 Aug;30(4):305-317
pubmed: 28353416
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28393-28401
pubmed: 33093200
Neuroimage. 2016 Apr 15;130:273-292
pubmed: 26827811
Trends Neurosci. 2018 Jul;41(7):415-417
pubmed: 29739627
Phys Med Biol. 2015 Nov 7;60(21):R271-95
pubmed: 26447925
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13687-92
pubmed: 26460033
Cereb Cortex. 2019 Jun 1;29(6):2668-2681
pubmed: 29897408
eNeuro. 2017 Sep 22;4(5):
pubmed: 28966977
Nat Commun. 2018 Jul 30;9(1):2987
pubmed: 30061566
Front Physiol. 2012 Feb 08;3:15
pubmed: 22347863
Brain Topogr. 2019 Nov;32(6):1020-1034
pubmed: 31754933
Clin Neurophysiol. 1999 Oct;110(10):1801-13
pubmed: 10574295
Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):694-9
pubmed: 11209067
Neuroimage. 2012 Nov 1;63(2):910-20
pubmed: 22484306
Hum Brain Mapp. 2022 Oct 1;43(14):4475-4491
pubmed: 35642600
Neuroimage. 2020 Apr 1;209:116537
pubmed: 31935517
Nat Neurosci. 2012 Jun;15(6):884-90
pubmed: 22561454
Neuron. 2015 Oct 7;88(1):220-35
pubmed: 26447583
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16783-8
pubmed: 21930901
J Neurosci. 2022 Aug 12;:
pubmed: 35970558
Neuroimage. 2020 Oct 1;219:117051
pubmed: 32540356
J Neurosci. 2009 Jul 1;29(26):8512-24
pubmed: 19571142
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):E4885-94
pubmed: 27469163
Nature. 2016 Aug 11;536(7615):171-178
pubmed: 27437579
Cell Rep. 2020 Dec 8;33(10):108471
pubmed: 33296654
Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23772-23782
pubmed: 31685634
Neuroimage. 2019 Oct 15;200:38-50
pubmed: 31207339
Neuroimage. 2016 Apr 1;129:345-355
pubmed: 26827813
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4392-7
pubmed: 23440216
J Neurosci. 2011 Apr 27;31(17):6353-61
pubmed: 21525275
Hum Brain Mapp. 2007 Nov;28(11):1178-93
pubmed: 17266107