Detection of early proteomic alterations in 5xFAD Alzheimer's disease neonatal mouse model via MALDI-MSI.
5XFAD
Alzheimer's disease
LC-MS/MS
MALDI-MS imaging
neonatal
proteomics
Journal
Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
revised:
18
01
2023
received:
04
08
2022
accepted:
19
01
2023
medline:
12
10
2023
pubmed:
20
3
2023
entrez:
19
3
2023
Statut:
ppublish
Résumé
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder, characterized by memory deficit and dementia. AD is considered a multifactorial disorder where multiple processes like amyloid-beta and tau accumulation, axonal degeneration, synaptic plasticity, and autophagic processes plays an important role. In this study, the spatial proteomic differences in the neonatal 5xFAD brain tissue were investigated using MALDI-MSI coupled to LC-MS/MS, and the statistically significantly altered proteins were associated with AD. Thirty-five differentially expressed proteins (DEPs) between the brain tissues of neonatal 5xFAD and their littermate mice were detected via MALDI-MSI technique. Among the 35 proteins identified, 26 of them were directly associated with AD. Our results indicated a remarkable resemblance in the protein expression profiles of neonatal 5xFAD brain when compared to AD patient specimens or AD mouse models. These findings showed that the molecular alterations in the AD brain existed even at birth and that some proteins are neurodegenerative presages in neonatal AD brain. HIGHLIGHTS: Spatial proteomic alterations in the 5xFAD mouse brain compared to the littermate. 26 out of 35 differentially expressed proteins associated with Alzheimer's disease (AD). Molecular alterations and neurodegenerative presages in neonatal AD brain. Alterations in the synaptic function an early and common neurobiological thread.
Substances chimiques
Amyloid beta-Peptides
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4572-4589Informations de copyright
© 2023 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Références
Martin B, Brenneman R, Becker KG, Gucek M, Cole RN, Maudsley S. iTRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer's mice: Understanding the interface between physiology and disease. PLoS One. 2008;3:e2750 https://doi.org/10.1371/journal.pone.0002750
Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol 2017;133:155-175. https://doi.org/10.1007/s00401-016-1662-x
Gallart-Palau X, Serra A, Lee BST, Guo X, Sze SK. Brain ureido degenerative protein modifications are associated with neuroinflammation and proteinopathy in Alzheimer's disease with cerebrovascular disease. J Neuroinflammation. 2017;14:1-12. https://doi.org/10.1186/s12974-017-0946-y
Goedert M, Spillantini MG. A century of Alzheimer's disease. Science. 2006;314:777-781. https://doi.org/10.1126/science.1132814
Teter B, Ashford JW. Neuroplasticity in Alzheimer's disease. J Neurosci Res. 2002;70:402-437. https://doi.org/10.1002/jnr.10441
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: Correlation with cognitive severity. Ann Neurol. 1990;27:457-464. https://doi.org/10.1002/ana.410270502
Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30:572-80. https://doi.org/10.1002/ana.410300410
Gauthier S, Rosa-Neto P, Morais JA¸ Webster C. World Alzheimer Report 2021: Journey through the Diagnosis of Dementia. Alzheimer's Disease International; 2021.
Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. Mass spectrometry imaging for plant biology: a review. Phytochem Rev. 2015;15:445-488. https://doi.org/10.1007/s11101-015-9440-2
Beine B, Diehl HC, Meyer HE, Henkel C. Tissue maldi mass spectrometry imaging (MALDI MSI) of peptides. Methods Mol Biol. 2016;1394:129-150. https://doi.org/10.1007/978-1-4939-3341-9_10
Huber K, Khamehgir-Silz P, Schramm T, Gorshkov V, Spengler B, Römpp A. Approaching cellular resolution and reliable identification in mass spectrometry imaging of tryptic peptides. Anal Bioanal Chem. 2018;410:5825-5837. https://doi.org/10.1007/s00216-018-1199-z
Basu SS, Regan MS, Randall EC, et al. Rapid MALDI mass spectrometry imaging for surgical pathology. Npj Precis Oncol. 2019;3:17. https://doi.org/10.1038/s41698-019-0089-y
Kriegsmann J, Kriegsmann M, Casadonte R. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review). Int J Oncol. 2015;46:893-906. https://doi.org/10.3892/ijo.2014.2788
Buchberger AR, DeLaney K, Johnson J, Li L. Mass Spectrometry Imaging: a review of emerging advancements and future insights. Anal Chem. 2018;90:240-265.
Hoffmann F, Umbreit C, Krüger T, et al. Identification of proteomic markers in head and neck cancer using MALDI-MS imaging, LC-MS/MS, and immunohistochemistry. Proteomics-Clin Appl. 2019;13:1-26. https://doi.org/10.1002/prca.201700173
Gurel B, Cansev M, Koc C, et al. Proteomics analysis of CA1 region of the hippocampus in pre-, progression and pathological stages in a mouse model of the Alzheimer's disease. Curr Alzheimer Res. 2019;16:613-621. https://doi.org/10.2174/1567205016666190730155926
Walker HJ. Metabolite Imaging by Mass Spectrometry: A New Discovery Tool. vol. 98. 1st ed. Elsevier Ltd.; 2021. https://doi.org/10.1016/bs.abr.2020.09.022
Chen K, Baluya D, Tosun M, Li F, Maletic-Savatic M. Imaging mass spectrometry: A new tool to assess molecular underpinnings of neurodegeneration. Metabolites. 2019;9:135. https://doi.org/10.3390/metabo9070135
Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer's disease. Mol Neurodegener. 2017;12:89. https://doi.org/10.1186/s13024-017-0231-7
Forner S, Kawauchi S, Balderrama-Gutierrez G, et al. Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease. Sci Data. 2021;8:1-16. https://doi.org/10.1038/s41597-021-01054-y
Ismeurt C, Giannoni P, Claeysen S. The 5×FAD mouse model of Alzheimer's disease. Diagnosis and Management in Dementia: The Neuroscience of Dementia. vol. 1 Elsevier; 2020. 207-221. https://doi.org/10.1016/B978-0-12-815854-8.00013-6
Oblak AL, Forner S, Territo PR, et al. Model organism development and evaluation for late-onset Alzheimer's disease: MODEL-AD. Alzheimer's. Dement Transl Res Clin Interv. 2020;6:1-8. https://doi.org/10.1002/trc2.12110
Mazi AR, Arzuman AS, Gurel B, et al. Neonatal neurodegeneration in Alzheimer's disease transgenic mouse model. J Alzheimer's Dis Reports. 2018;2:79-91. https://doi.org/10.3233/adr-170049
Tsanov M, Manahan-Vaughan D. Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing. Neuroscientist. 2008;14:584-597. https://doi.org/10.1177/1073858408315655
Cuestas Torres DM, Cardenas FP. Synaptic plasticity in Alzheimer's disease and healthy aging. Rev Neurosci. 2020;31:245-268. https://doi.org/10.1515/revneuro-2019-0058
Soria Lopez JA, González HM, Léger GC. Alzheimer's disease. Handb. Clin. Neurol. 2019;167:231-255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3
Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic impairment in Alzheimer's disease: a dysregulated symphony. Trends Neurosci. 2017;40:347-57. https://doi.org/10.1016/j.tins.2017.04.002
Pelucchi S, Stringhi R, Marcello E. Dendritic spines in alzheimer's disease: how the actin cytoskeleton contributes to synaptic failure. Int J Mol Sci. 2020;21:1-23. https://doi.org/10.3390/ijms21030908
Kametani F, Hasegawa M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's disease. Front Neurosci. 2018;12:25. https://doi.org/10.3389/fnins.2018.00025
Connolly K, Lehoux M, O'Rourke R, Assetta B, Erdemir GA, Elias JA, et al. Potential role of chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and Alzheimer's disease. Alzheimer's Dement. 2023;19(1):9-24. https://doi.org/10.1002/alz.12612
Skaper SD, Facci L, Zusso M, Giusti P. Synaptic plasticity, dementia and Alzheimer disease. CNS Neurol Disord-Drug Targets. 2017;16:220-233. https://doi.org/10.2174/1871527316666170113120853
Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in Alzheimer disease. Nat Rev Neurol. 2023;19(1):19-38. https://doi.org/10.1038/s41582-022-00749-z
Li K, Wei Q, Liu FF, et al. Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations. Mol Neurobiol. 2018;55:3021-3032. https://doi.org/10.1007/s12035-017-0533-3
Qin T, Prins S, Groeneveld GJ, et al. Utility of animal models to understand human Alzheimer's disease, using the mastermind research approach to avoid unnecessary further sacrifices of animals. Int J Mol Sci. 2020;21:3158. https://doi.org/10.3390/ijms21093158
Reza-Zaldivar EE, Hernández-Sápiens MA, Minjarez B, et al. Dendritic spine and synaptic plasticity in Alzheimer's disease: a focus on MicroRNA. Front Cell Dev Biol. 2020;8:1-9. https://doi.org/10.3389/fcell.2020.00255
Mckean NE, Handley RR, Snell RG. A review of the current mammalian models of Alzheimer's disease and challenges that need to be overcome. Int J Mol Sci. 2021;22:13168. https://doi.org/10.3390/ijms222313168
Khachaturian ZS, Khachaturian AS. The paradox of research on dementia-Alzheimer's disease. J Prev Alzheimer's Dis. 2016;3:1-3. https://doi.org/10.14283/jpad.2016.117
Kuljis RO. Lesions in the Pulvinar in Patients with Alzheimerʼs Disease. J Neuropathol Exp Neurol. 1994;53:202-211. https://doi.org/10.1097/00005072-199403000-00012
Moon W-J, Kim H-J, Roh HG, Choi JW, Han S-H. Fluid-attenuated inversion recovery hypointensity of the pulvinar nucleus of patients with Alzheimer disease: its possible association with iron accumulation as evidenced by the t2 * map. Korean J Radiol. 2012;13:674. https://doi.org/10.3348/kjr.2012.13.6.674
Zarei M, Patenaude B, Damoiseaux J, et al. Combining shape and connectivity analysis: An MRI study of thalamic degeneration in Alzheimer's disease. Neuroimage. 2010;49:1-8. https://doi.org/10.1016/j.neuroimage.2009.09.001
Xuereb JH, Perry RH, Candy JM, Perry EK, Marshall E, Bonham JR. Nerve cell loss in the thalamus in alzeheimer's disease and parkinson's disease. Brain. 1991;114:1363-1379. https://doi.org/10.1093/brain/114.3.1363
Leow YN, Zhou B, Sullivan HA, Barlowe AR, Wickersham IR, Sur M. Brain-wide mapping of inputs to the mouse lateral posterior (LP/Pulvinar) thalamus-anterior cingulate cortex network. J Comp Neurol. 2022;530:1992-2013. https://doi.org/10.1002/cne.25317
Sittig LJ, Carbonetto P, Engel KA, Krauss KS, Barrios-Camacho CM, Palmer AA. Genetic background limits generalizability of genotype-phenotype relationships. Neuron. 2016;91:1253-1259. https://doi.org/10.1016/j.neuron.2016.08.013
Kang S, Kim J, Chang K-A. Spatial memory deficiency early in 6xTg Alzheimer's disease mouse model. Sci Rep. 2021;11:1334. https://doi.org/10.1038/s41598-020-79344-5
Oblak AL, Lin PB, Kotredes KP, et al. Comprehensive evaluation of the 5XFAD mouse model for preclinical testing applications: a MODEL-AD study. Front Aging Neurosci. 2021;13:1-22. https://doi.org/10.3389/fnagi.2021.713726
Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, et al. Transgenic mouse models of Alzheimer's disease: an integrative analysis. Int J Mol Sci. 2022;23:5404. https://doi.org/10.3390/ijms23105404
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 2014;5:1-23. https://doi.org/10.3389/fgene.2014.00088
Mango D, Saidi A, Cisale GY, Feligioni M, Corbo M, Nisticò R. Targeting synaptic plasticity in experimental models of Alzheimer's disease. Front Pharmacol. 2019;10:1-8. https://doi.org/10.3389/fphar.2019.00778
Heneka MT, Carson MJ, Khoury J, et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2018;14:388-405. https://doi.org/10.1016/S1474-4422(15)70016-5.Neuroinflammation
Lv J, Ma S, Zhang X, et al. Quantitative proteomics reveals that PEA15 regulates astroglial Aβ phagocytosis in an Alzheimer's disease mouse model. J Proteomics. 2014;110:45-58. https://doi.org/10.1016/j.jprot.2014.07.028
Hartl D, Rohe M, Mao L, Staufenbiel M, Zabel C, Klose J. Impairment of adolescent hippocampal plasticity in a mouse model for Alzheimer's disease precedes disease phenotype. PLoS One. 2008;3:1-10. https://doi.org/10.1371/journal.pone.0002759
Rhein V, Song X, Wiesner A, et al. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci U S A. 2009;106:20057-20062. https://doi.org/10.1073/pnas.0905529106
Chang SH, Jung IS, Han GY, Kim NH, Kim HJ, Kim CW. Proteomic profiling of brain cortex tissues in a tau transgenic mouse model of Alzheimer's disease. Biochem Biophys Res Commun. 2013;430:670-675. https://doi.org/10.1016/j.bbrc.2012.11.093
Chou JL, Shenoy D V., Thomas N, et al. Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer's disease. J Proteomics. 2011;74:466-479. https://doi.org/10.1016/j.jprot.2010.12.012
Yang H, Wittnam JL, Zubarev RA, Bayer TA. Shotgun brain proteomics reveals early molecular signature in presymptomatic mouse model of Alzheimer's disease. J Alzheimer's Dis. 2013;37:297-308. https://doi.org/10.3233/JAD-130476
Schambra U. Prenatal Mouse Brain Atlas. Springer US; 2008. https://doi.org/10.1007/978-0-387-47093-1
Thomas A, Chaurand P. Advances in tissue section preparation for MALDI imaging MS. Bioanalysis. 2014;6:967-982. https://doi.org/10.4155/bio.14.63
Cillero-Pastor B, Heeren RMA. Matrix-assisted laser desorption ionization mass spectrometry imaging for peptide and protein analyses: a critical review of on-tissue digestion. J Proteome Res. 2014;13:325-335. https://doi.org/10.1021/pr400743a
Stoeckli M, Staab D, Staufenbiel M, Wiederhold KH, Signor L. Molecular imaging of amyloid β peptides in mouse brain sections using mass spectrometry. Anal Biochem. 2002;311:33-39. https://doi.org/10.1016/S0003-2697(02)00386-X
Kakuda N, Miyasaka T, Iwasaki N, et al. Distinct deposition of amyloid-β species in brains with Alzheimer's disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol Commun. 2017;5:73. https://doi.org/10.1186/s40478-017-0477-x
Diehl HC, Beine B, Elm J, et al. The challenge of on-tissue digestion for MALDI MSI- a comparison of different protocols to improve imaging experiments. Anal Bioanal Chem. 2015;407:2223-2243. https://doi.org/10.1007/s00216-014-8345-z
Karayel-Basar M, Uras I, Kiris I, Sahin B, Akgun E, Baykal AT. Spatial proteomic alterations detected via MALDI-MS imaging implicate neuronal loss in a Huntington's disease mouse (YAC128) brain. Mol Omi. 2022;18:336-347. https://doi.org/10.1039/d1mo00440a
Gustafsson JOR, Eddes JS, Meding S, et al. Internal calibrants allow high accuracy peptide matching between MALDI imaging MS and LC-MS/MS. J Proteomics. 2012;75:5093-5105. https://doi.org/10.1016/j.jprot.2012.04.054
Ressom HW, Varghese RS, Goldman R. Computational methods for analysis of MALDI-TOF spectra to discover peptide serum biomarkers. The Protein Protocols Handbook. Springer; 2009:1175-1183. https://doi.org/10.1007/978-1-59745-198-7_125
Yajima Y, Hiratsuka T, Kakimoto Y, Ogawa S, Shima K, Yamazaki Y, et al. Region of interest analysis using mass spectrometry imaging of mitochondrial and sarcomeric proteins in acute cardiac infarction tissue. Sci Rep. 2018;8:1-10. https://doi.org/10.1038/s41598-018-25817-7
Angel PM, Norris-Caneda K, Drake RR. In situ imaging of tryptic peptides by MALDI imaging mass spectrometry using fresh-frozen or formalin-fixed, paraffin-embedded tissue. Curr Protoc Protein Sci. 2018;94:1-21. https://doi.org/10.1002/cpps.65
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359-362. https://doi.org/10.1038/nmeth.1322
Kiris I, Kukula-Koch W, Karayel-Basar M, Gurel B, Coskun J, Baykal AT. Proteomic alterations in the cerebellum and hippocampus in an Alzheimer's disease mouse model: alleviating effect of palmatine. Biomed Pharmacother. 2023;158:114111. https://doi.org/10.1016/j.biopha.2022.114111
Kiris I, Skalicka-Wozniak K, Basar MK, Sahin B, Gurel B, Baykal AT. Molecular effects of pteryxin and scopoletin in the 5xFAD Alzheimer's disease mouse model. Curr Med Chem. 2022;29:2937-2950. https://doi.org/10.2174/0929867328666210827152914
Schober Y, Schramm T, Spengler B, Römpp A. Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides. Rapid Commun Mass Spectrom 2011;25:2475-2483. https://doi.org/10.1002/rcm.5135
Hawkinson TR, Clarke HA, Young LEA, et al. In situ spatial glycomic imaging of mouse and human Alzheimer's disease brains. Alzheimer's Dement 2022;18(10):1721-1735. https://doi.org/10.1002/alz.12523
Wang Y, Xu J, You W, et al. Roles of Rufy3 in experimental subarachnoid hemorrhage-induced early brain injury via accelerating neuronal axon repair and synaptic plasticity. Mol Brain. 2022;15:1-20. https://doi.org/10.1186/s13041-022-00919-6
Chiu C-C, Yeh T-H, Lai S-C, et al. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp Neurol. 2015;263:244-253. https://doi.org/10.1016/j.expneurol.2014.09.016
Hafner A, Glavan G, Obermajer N, Živin M, Schliebs R, Kos J. Neuroprotective role of γ-enolase in microglia in a mouse model of Alzheimer's disease is regulated by cathepsin X. Aging Cell. 2013;12:604-614. https://doi.org/10.1111/acel.12093
Du Y, Du Y, Zhang Y, et al. MKP-1 reduces aβ generation and alleviates cognitive impairments in Alzheimer's disease models. Signal Transduct Target Ther. 2019;4. https://doi.org/10.1038/s41392-019-0091-4
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could heat therapy be an effective treatment for Alzheimer's and Parkinson's diseases? A narrative review. Front Physiol. 2020;10:1-14. https://doi.org/10.3389/fphys.2019.01556
Held T, Barakat AZ, Mohamed BA, et al. Heat-shock protein HSPA4 is required for progression of spermatogenesis. Reproduction. 2011;142:133-144. https://doi.org/10.1530/REP-11-0023
Wang DB, Kinoshita Y, Kinoshita C, et al. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 2015;138:2005-219. https://doi.org/10.1093/brain/awv128
Wang J, He Z. NAD and axon degeneration: from the Wlds gene to neurochemistry. Cell Adh Migr. 2009;3:77-87. https://doi.org/10.4161/cam.3.1.7483
Salvadores N, Gerónimo-Olvera C, Court FA. Axonal degeneration in AD: the contribution of aβ and tau. Front Aging Neurosci. 2020;12:1-16. https://doi.org/10.3389/fnagi.2020.581767
Usardi A, Iyer K, Sigoillot SM, Dusonchet A, Selimi F. The immunoglobulin-like superfamily member IGSF3 is a developmentally regulated protein that controls neuronal morphogenesis. Dev Neurobiol. 2016;77:75-92. https://doi.org/10.1002/dneu.22412
Zeng Q, Siu W, Li L, et al. Autophagy in Alzheimer's disease and promising modulatory effects of herbal medicine. Exp Gerontol. 2019;119:100-110. https://doi.org/10.1016/j.exger.2019.01.027
Uddin MS, Stachowiak A, Al Mamun A, et al. Autophagy and Alzheimer's disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci. 2018;10:1-18. https://doi.org/10.3389/fnagi.2018.00004
Rehiman SH, Lim SM, Lim FT, et al. Fibrinogen isoforms as potential blood-based biomarkers of Alzheimer's disease using a proteomics approach. Int J Neurosci. 2020;0:1-12. https://doi.org/10.1080/00207454.2020.1860038
Cheon MS, Fountoulakis M, Cairns NJ, Dierssen M, Herkner K, Lubec G. Decreased protein levels of stathmin in adult brains with Down syndrome and Alzheimer's disease. J Neural Transm Suppl. 2001;(61):281-288. https://doi.org/10.1007/978-3-7091-6262-0_23
Hayashi K, Pan Y, Shu H, Ohshima T, Kansy JW, White CL, et al. Phosphorylation of the tubulin-binding protein, stathmin, by Cdk5 and MAP kinases in the brain. J Neurochem. 2006;99:237-250. https://doi.org/10.1111/j.1471-4159.2006.04113.x
Chadwick W, Brenneman R, Martin B.Maudsley S. complex and multidimensional lipid raft alterations in a murine model of Alzheimer's disease. Int J Alzheimers Dis. 2010;2010. https://doi.org/10.4061/2010/604792
Barker R, Kehoe PG, Love S. Activators and inhibitors of the plasminogen system in Alzheimer's disease. J Cell Mol Med. 2012;16:865-876. https://doi.org/10.1111/j.1582-4934.2011.01394.x
Angelucci F, Čechová K, Průša R, Hort J. Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther. 2019;25:303-313. https://doi.org/10.1111/cns.13082
Ivanov PA, Mikhaylova NM, Klyushnik TP. Distribution of translation initiation factor eIF3 in neutrophils in Alzheimer disease. Biochem Suppl Ser A Membr Cell Biol. 2016;10:328-332. https://doi.org/10.1134/S1990747816030053
Zelaya MV, Pérez-Valderrama E, De Morentin XM, et al. Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer's disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies. Oncotarget. 2015;6:39437-39456. https://doi.org/10.18632/oncotarget.6254
Bastrup J, Kastaniegaard K, Asuni AA, Volbracht C, Stensballe A. Proteomic and unbiased post-translational modification profiling of amyloid plaques and surrounding tissue in a transgenic mouse model of Alzheimer's disease. J Alzheimer's Dis. 2020;73:393-411. https://doi.org/10.3233/JAD-190652
Lee L, Sakurai M, Matsuzaki S, Arancio O, Fraser P. SUMO and Alzheimer's disease. Neuromolecular Med. 2013;23:1-7. https://doi.org/10.1007/s12017-013-8257-7.SUMO
Lee L, Dale E, Staniszewski A, Zhang H, et al. Regulation of synaptic plasticity and cognition by SUMO in normal physiology and Alzheimer's disease. Sci Rep. 2014;4:1-14. https://doi.org/10.1038/srep07190
Kwak YD, Wang B, Li JJ, Wang R, et al. Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J Neurosci. 2012;32:10971-10981. https://doi.org/10.1523/JNEUROSCI.1836-12.2012
Gambuzza M, Sofo V, Salmeri F, Soraci L, Marino S, Bramanti P. Toll-like receptors in Alzheimer's disease: a therapeutic perspective. CNS Neurol Disord-Drug Targets. 2014;13:1542-1558. https://doi.org/10.2174/1871527313666140806124850
Arroyo DS, Soria JA, Gaviglio EA, Rodriguez-Galan MC, Iribarren P. Toll-like receptors are key players in neurodegeneration. Int Immunopharmacol. 2011;11:1415-1421. https://doi.org/10.1016/j.intimp.2011.05.006
Kulczyńska-Przybik A, Dulewicz M, Słowik A, et al. The clinical significance of cerebrospinal fluid reticulon 4 (RTN4) levels in the differential diagnosis of neurodegenerative diseases. J Clin Med. 2021;10:5281. https://doi.org/10.3390/jcm10225281
Masliah E, Xie F, Dayan S, et al. Genetic deletion of Nogo/Rtn4 ameliorates behavioral and neuropathological outcomes in APP transgenic mice. Neuroscience. 2010;169:488-494. https://doi.org/10.1016/j.neuroscience.2010.04.045.Genetic
Beckelman BC, Yang W, Kasica NP, et al. Genetic reduction of eEF2 kinase alleviates pathophysiology in Alzheimer's disease model mice. J Clin Invest. 2019;129:820-833. https://doi.org/10.1172/JCI122954
Bereczki E, Branca RM, Francis PT, et al. Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain A J Neurol. 2018;141:582-595. https://doi.org/10.1093/brain/awx352
Cortes-Canteli M, Strickland S, Gambuzza M, et al. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer's disease. J Alzheimer's Dis. 2014;4:1-14. https://doi.org/10.3233/JAD-141266
Malik AM, Barmada SJ. Matrin 3 in neuromuscular disease: physiology and pathophysiology. JCI Insight. 2021;6:e143948. https://doi.org/10.1172/jci.insight.143948
Seyfried NT, Dammer EB, Swarup V, et al. A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer's disease. Cell Syst. 2017;4:60-72.e4. https://doi.org/10.1016/j.cels.2016.11.006
Neuner SM, Wilmott LA, Hoffmann BR, Mozhui K, Kaczorowski CC. Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. Behav Brain Res. 2017;322:288-298. https://doi.org/10.1016/j.bbr.2016.06.002
Dayon L, Núñez Galindo A, Wojcik J, et al. Alzheimer disease pathology and the cerebrospinal fluid proteome. Alzheimer's Res Ther. 2018;10:1-12. https://doi.org/10.1186/s13195-018-0397-4
Drummond E, Nayak S, Faustin A, et al. Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer's disease. Acta Neuropathol. 2017;133:933-954. https://doi.org/10.1007/s00401-017-1691-0.Proteomic
Delfino D, Rossetti DV, Martelli C, et al. Exploring the brain tissue proteome of TgCRND8 Alzheimer's disease model mice under B vitamin deficient diet induced hyperhomocysteinemia by LC-MS top-down platform. J Chromatogr B Anal Technol Biomed Life Sci 2019;1124:165-172. https://doi.org/10.1016/j.jchromb.2019.06.005
Cenini G, Fiorini A, Sultana R, et al. An investigation of the molecular mechanisms engaged prior and subsequent to the development of Alzheimer disease neuropathology in Down syndrome: a proteomics approach. Free Radic Biol Med. 2014;76:89-95. https://doi.org/10.1016/j.freeradbiomed.2014.08.006.An
Kaleem M, Zhao A, Hamshere M, Myers AJ. Identification of a novel valosin-containing protein polymorphism in late-onset Alzheimer's disease. Neurodegener Dis. 2007;4:376-381. https://doi.org/10.1159/000105158
Zussy C, Loustalot F, Junyent F, et al. Coxsackievirus adenovirus receptor loss impairs adult neurogenesis, synapse content, and hippocampus plasticity. J Neurosci. 2016;36:9558-9571. https://doi.org/10.1523/JNEUROSCI.0132-16.2016
Michel TM, Gsell W, Käsbauer L, et al. Increased mitochondrial aldehyde dehydrogenase (ALDH) in the putamen of individuals with Alzheimer's disease. J Alzheimer's Dis. 2010;19:1295-1301. https://doi.org/10.3233/JAD-2010-1326
Grünblatt E, Riederer P. Aldehyde dehydrogenase (ALDH) in Alzheimer's and Parkinson's disease. J Neural Transm. 2014;123:83-90. https://doi.org/10.1007/s00702-014-1320-1
Muraoka S, DeLeo AM, Sethi MK, et al. Proteomic and biological profiling of extracellular vesicles from Alzheimer's disease human brain tissues. Alzheimer's Dement. 2020;16:896-907. https://doi.org/10.1002/alz.12089
Quiroz-Baez R, Hernández-Ortega K, Martínez-Martínez E. Insights into the proteomic profiling of extracellular vesicles for the identification of early biomarkers of neurodegeneration. Front Neurol. 2020;11:1-16. https://doi.org/10.3389/fneur.2020.580030
Chiasserini D, Bijnsdorp I, Bellomo G, et al. Proteomic analysis of extracellular vesicles in cerebrospinal fluid of patients with Alzheimer's disease. MedRxiv. 2020. https://doi.org/10.1101/2020.02.22.20026609
Lachén-Montes M, González-Morales A, de Morentin XM, et al. An early dysregulation of FAK and MEK/ERK signaling pathways precedes the β-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer's disease. J Proteomics. 2016;148:149-158. https://doi.org/10.1016/j.jprot.2016.07.032
Gerschütz A, Heinsen H, Grünblatt E, et al. Neuron-specific alterations in signal transduction pathways associated with Alzheimer's Disease. J Alzheimer's Dis. 2014;40:135-142. https://doi.org/10.3233/JAD-131280
Wang H, Dey D, Carrera I, et al. COPS5 (Jab1) protein increases β site processing of amyloid precursor protein and amyloid βpeptide generation by stabilizing RanBP9 protein levels. J Biol Chem. 2013;288:26668-26677. https://doi.org/10.1074/jbc.M113.476689
Silva PN, Furuya TK, Braga IL, et al. Analysis of HSPA8 and HSPA9 mRNA expression and promoter methylation in the brain and blood of Alzheimer's disease patients. J Alzheimer's Dis. 2014;38:165-170. https://doi.org/10.3233/JAD-130428
Campanella C, Pace A, Bavisotto CC, et al. Heat shock proteins in Alzheimer's disease: role and targeting. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19092603
Lu RC, Tan MS, Wang H, Xie AM, Yu JT, Tan L. Heat shock protein 70 in alzheimer's disease. Biomed Res Int. 2014;2014:435203. https://doi.org/10.1155/2014/435203
Tajes M, Guivernau B, Ramos-Fernández E, et al. The pathophysiology of triose phosphate isomerase dysfunction in alzheimer's disease. Histol Histopathol. 2013;28:43-51. https://doi.org/10.14670/HH-28.43
Tajes M, Eraso-Pichot A, Rubio-Moscardó F, et al. Methylglyoxal produced by amyloid-β peptide-induced nitrotyrosination of triosephosphate isomerase triggers neuronal death in alzheimer's disease. J Alzheimer's Dis. 2014;41:273-288. https://doi.org/10.3233/JAD-131685
Hipkiss AR. Aging, Alzheimer's disease and dysfunctional glycolysis; similar effects of too much and too little. Aging Dis. 2019;10:1328-1331. https://doi.org/10.14336/AD.2019.0611
Zhang J, Yin Y, Ji Z, et al. Endophilin2 interacts with GluA1 to mediate AMPA receptor endocytosis Induced by oligomeric amyloid- β. Neural Plast. 2017;2017. 8197085. https://doi.org/10.1155/2017/8197085