PROTEOMAS: a workflow enabling harmonized proteomic meta-analysis and proteomic signature mapping.
Adverse outcome pathways (AOP)
FAIR data
Harmonized proteomics data analysis
Meta-analysis
Mode-of-action (MoA)
Nanomaterials
Proteomics
Journal
Journal of cheminformatics
ISSN: 1758-2946
Titre abrégé: J Cheminform
Pays: England
ID NLM: 101516718
Informations de publication
Date de publication:
19 Mar 2023
19 Mar 2023
Historique:
received:
23
12
2022
accepted:
13
03
2023
entrez:
20
3
2023
pubmed:
21
3
2023
medline:
21
3
2023
Statut:
epublish
Résumé
Toxicological evaluation of substances in regulation still often relies on animal experiments. Understanding the substances' mode-of-action is crucial to develop alternative test strategies. Omics methods are promising tools to achieve this goal. Until now, most attention was focused on transcriptomics, while proteomics is not yet routinely applied in toxicology despite the large number of datasets available in public repositories. Exploiting the full potential of these datasets is hampered by differences in measurement procedures and follow-up data processing. Here we present the tool PROTEOMAS, which allows meta-analysis of proteomic data from public origin. The workflow was designed for analyzing proteomic studies in a harmonized way and to ensure transparency in the analysis of proteomic data for regulatory purposes. It agrees with the Omics Reporting Framework guidelines of the OECD with the intention to integrate proteomics to other omic methods in regulatory toxicology. The overarching aim is to contribute to the development of AOPs and to understand the mode of action of substances. To demonstrate the robustness and reliability of our workflow we compared our results to those of the original studies. As a case study, we performed a meta-analysis of 25 proteomic datasets to investigate the toxicological effects of nanomaterials at the lung level. PROTEOMAS is an important contribution to the development of alternative test strategies enabling robust meta-analysis of proteomic data. This workflow commits to the FAIR principles (Findable, Accessible, Interoperable and Reusable) of computational protocols.
Identifiants
pubmed: 36935498
doi: 10.1186/s13321-023-00710-2
pii: 10.1186/s13321-023-00710-2
pmc: PMC10024914
doi:
Types de publication
Journal Article
Langues
eng
Pagination
34Subventions
Organisme : EU H2020 project NanoInformaTIX
ID : No 814426
Organisme : BfR Sonderforschungsprojekt
ID : 1322-777
Organisme : Swiss National Science Foundation, NRP79 "Advancing 3R - Animals, Research and Society", by the canton and the University of Fribourg, and by the SKINTEGRITY.CH
ID : 407940
Organisme : Swedish Fund for Research Without Animal Experiments
ID : F2021-0005
Informations de copyright
© 2023. The Author(s).
Références
Proteomics. 2017 Mar;17(6):
pubmed: 28195392
Regul Toxicol Pharmacol. 2021 Oct;125:105020
pubmed: 34333066
Environ Health Perspect. 2014 Aug;122(8):796-805
pubmed: 24727499
J Proteome Res. 2018 Apr 6;17(4):1415-1425
pubmed: 29457907
Sci Data. 2016 Mar 15;3:160018
pubmed: 26978244
Nat Commun. 2017 Jul 03;8:15932
pubmed: 28671182
Nat Nanotechnol. 2022 Jan;17(1):17-18
pubmed: 34949777
JCI Insight. 2021 Mar 8;6(5):
pubmed: 33561017
Nanotoxicology. 2021 Mar;15(2):238-256
pubmed: 33332178
ACS Nano. 2020 Apr 28;14(4):4096-4110
pubmed: 32167280
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
Biochem Biophys Res Commun. 2016 Oct 28;479(4):607-609
pubmed: 27663662
Int J Mol Sci. 2021 May 19;22(10):
pubmed: 34069552
Bioinformatics. 2001 Jun;17(6):520-5
pubmed: 11395428
ALTEX. 2017;34(4):539-559
pubmed: 29156079
Sci Rep. 2017 Mar 30;7:44829
pubmed: 28358042
Sci Rep. 2018 Jul 27;8(1):11376
pubmed: 30054531
Nucleic Acids Res. 2022 Jan 7;50(D1):D687-D692
pubmed: 34788843
Small. 2021 Apr;17(15):e2003465
pubmed: 33502096
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Bioinformatics. 2012 Jan 1;28(1):112-8
pubmed: 22039212
Regul Toxicol Pharmacol. 2017 Dec;91 Suppl 1:S14-S26
pubmed: 28927750
Part Fibre Toxicol. 2020 May 25;17(1):16
pubmed: 32450889
Sci Rep. 2019 Jan 17;9(1):179
pubmed: 30655578
Nat Chem Biol. 2020 Oct;16(10):1111-1119
pubmed: 32690943
Toxicol Sci. 2014 Dec;142(2):312-20
pubmed: 25466378
Nat Commun. 2014 Nov 28;5:5469
pubmed: 25429762
Sci Rep. 2017 Mar 14;7:44021
pubmed: 28290473
J Proteomics. 2019 Feb 20;193:1-9
pubmed: 30557664
Cell Syst. 2015 Dec 23;1(6):417-425
pubmed: 26771021
J Proteome Res. 2020 Jan 3;19(1):279-291
pubmed: 31693381
Sci Rep. 2021 Jan 19;11(1):1760
pubmed: 33469060
Mol Cell Proteomics. 2017 Dec;16(12):2184-2198
pubmed: 28951444
EMBO Rep. 2020 Dec 3;21(12):e51252
pubmed: 33112036
Toxicol In Vitro. 2013 Apr;27(3):1163-9
pubmed: 23032079
Nat Chem Biol. 2017 Dec;13(12):1222-1231
pubmed: 28991240
BMC Bioinformatics. 2012;13 Suppl 16:S5
pubmed: 23176322
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450
pubmed: 30395289
Sci Data. 2021 Feb 8;8(1):49
pubmed: 33558569
Part Fibre Toxicol. 2016 Mar 15;13:15
pubmed: 26979667
Mol Biol Int. 2015;2015:698169
pubmed: 26357572
Biomed Pharmacother. 2019 Nov;119:109390
pubmed: 31520916
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Cell Death Dis. 2020 Dec 8;11(12):1042
pubmed: 33293527
Proteomics. 2017 Nov;17(22):
pubmed: 28961369
Adv Sci (Weinh). 2020 Oct 11;7(22):2002221
pubmed: 33240770
Nat Nanotechnol. 2021 Jun;16(6):644-654
pubmed: 34017099
Proteomics. 2017 Jan;17(1-2):
pubmed: 27891773
Nanotoxicology. 2018 Mar;12(2):138-152
pubmed: 29350075
J Proteome Res. 2016 Apr 1;15(4):1116-25
pubmed: 26906401
Part Fibre Toxicol. 2016 May 11;13(1):25
pubmed: 27169501
Proteomics. 2021 Jan;21(2):e2000178
pubmed: 33015975