Maximum generable interest: A universal standard for Google Trends search queries.

Google Trends Infodemiology Infoveillance Maximum generable interest Search engine data Universal reference

Journal

Healthcare analytics (New York, N.Y.)
ISSN: 2772-4425
Titre abrégé: Healthc Anal (N Y)
Pays: United States
ID NLM: 9918523186206676

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 28 01 2023
revised: 25 02 2023
accepted: 06 03 2023
entrez: 20 3 2023
pubmed: 21 3 2023
medline: 21 3 2023
Statut: ppublish

Résumé

The coronavirus or COVID-19 pandemic represents a health event with far-reaching global consequences, triggering a strong search interest in related topics on the Internet worldwide. The use of search engine data has become commonplace in research, but a universal standard for comparing different works is desirable to simplify the comparison. The coronavirus pandemic's enormous impact and media coverage have triggered an exceptionally high search interest. Consequently, the maximum generable interest (MGI) on coronavirus is proposed as a universal reference for objectifying and comparing relative search interest in the future. This search interest can be explored with search engine data such as Google Trends data. Additional standards for medium and low search volumes can also be used to reflect the search interest of topics at different levels. Size standards, such as reference to MGI, may help make research more comparable and better evaluate relative search volumes. This study presents a framework for this purpose using the example of stroke.

Identifiants

pubmed: 36936703
doi: 10.1016/j.health.2023.100158
pii: S2772-4425(23)00025-4
pmc: PMC9997059
doi:

Types de publication

Journal Article

Langues

eng

Pagination

100158

Informations de copyright

© 2023 The Author(s).

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Nature. 2020 Feb;578(7795):363
pubmed: 32071450
BMJ. 2002 Mar 9;324(7337):573-7
pubmed: 11884321
JMIR Public Health Surveill. 2020 May 5;6(2):e19374
pubmed: 32338613
JMIR Public Health Surveill. 2019 May 29;5(2):e13439
pubmed: 31144671
BMC Public Health. 2016 Dec 8;16(1):1238
pubmed: 27931204
J Med Internet Res. 2020 Aug 10;22(8):e19611
pubmed: 32530816
One Health. 2021 Jul 03;13:100288
pubmed: 34277922
Am J Prev Med. 2011 May;40(5 Suppl 2):S154-8
pubmed: 21521589
Front Res Metr Anal. 2021 May 25;6:670226
pubmed: 34113751
Sci Rep. 2020 Nov 26;10(1):20693
pubmed: 33244028
Circulation. 2022 Feb 22;145(8):e153-e639
pubmed: 35078371
Rev Neurol (Paris). 2023 Mar;179(3):218-222
pubmed: 36473747
J Med Internet Res. 2009 Mar 27;11(1):e11
pubmed: 19329408
J Med Internet Res. 2020 Aug 25;22(8):e20673
pubmed: 32748790
Curr Cardiol Rep. 2019 Mar 4;21(4):21
pubmed: 30828746
Health Info Libr J. 2018 Jun;35(2):91-120
pubmed: 29729073
PLoS One. 2013;8(2):e56176
pubmed: 23457520
JMIR Public Health Surveill. 2020 Jul 17;6(3):e19969
pubmed: 32501806
Int J Environ Res Public Health. 2020 Feb 12;17(4):
pubmed: 32059576
Health Policy. 2019 Mar;123(3):338-341
pubmed: 30660346
Int J Cancer. 2021 Apr 5;:
pubmed: 33818764
BMC Med Res Methodol. 2022 Jan 30;22(1):33
pubmed: 35094682
J Epidemiol Glob Health. 2017 Sep;7(3):185-189
pubmed: 28756828
J Med Internet Res. 2020 Apr 28;22(4):e16206
pubmed: 32310818
Int J Environ Res Public Health. 2022 Nov 21;19(22):
pubmed: 36430115
JAMA. 2004 Jun 23;291(24):2946
pubmed: 15213205
Am J Med. 2002 Dec 15;113(9):763-5
pubmed: 12517369
Brain Behav Immun Health. 2022 Jul;22:100455
pubmed: 35373158
Int J Infect Dis. 2020 Jun;95:192-197
pubmed: 32305520
Int J Environ Res Public Health. 2022 Jun 30;19(13):
pubmed: 35805689
Cureus. 2020 Sep 16;12(9):e10487
pubmed: 33083187

Auteurs

Steffen Springer (S)

SRH Wald-Klinikum Gera GmbH, Gera, Germany.

Artur Strzelecki (A)

University of Economics in Katowice, Department of Informatics, Katowice, Poland.

Michael Zieger (M)

SRH Wald-Klinikum Gera GmbH, Gera, Germany.

Classifications MeSH