Deep-learning convolutional neural network-based scatter correction for contrast enhanced digital breast tomosynthesis in both cranio-caudal and mediolateral-oblique views.

contrast-enhanced digital breast tomosynthesis convolutional neural network scatter correction

Journal

Journal of medical imaging (Bellingham, Wash.)
ISSN: 2329-4302
Titre abrégé: J Med Imaging (Bellingham)
Pays: United States
ID NLM: 101643461

Informations de publication

Date de publication:
Feb 2023
Historique:
received: 08 08 2022
accepted: 17 02 2023
pmc-release: 15 03 2024
entrez: 20 3 2023
pubmed: 21 3 2023
medline: 21 3 2023
Statut: ppublish

Résumé

Scatter radiation in contrast-enhanced digital breast tomosynthesis (CEDBT) reduces the image quality and iodinated lesion contrast. Monte Carlo simulation can provide accurate scatter estimation at the cost of computational burden. A model-based convolutional method trades off accuracy for processing speed. The purpose of this study is to develop a fast and robust deep-learning (DL) convolutional neural network (CNN)-based scatter correction method for CEDBT. Projection images and scatter maps of digital anthropomorphic breast phantoms were generated using Monte Carlo simulations. Experiments were conducted to validate the simulated scatter-to-primary ratio (SPR) at different locations of a breast phantom. Simulated projection images were used for CNN training and testing. Two separate U-Nets [low-energy (LE)-CNN and high-energy (HE)-CNN] were trained for LE and HE spectrum, respectively. CNN-based scatter correction was applied to a clinical case with a malignant iodinated mass to evaluate the influence on the lesion detection. The average and standard deviation of mean absolute percentage error of LE-CNN and HE-CNN estimated scatter map are We developed a CNN-based scatter correction method for CEDBT in both CC view and mediolateral-oblique view with high accuracy and fast speed.

Identifiants

pubmed: 36937988
doi: 10.1117/1.JMI.10.S2.S22404
pii: 22209SSR
pmc: PMC10016368
doi:

Types de publication

Journal Article

Langues

eng

Pagination

S22404

Informations de copyright

© 2023 Society of Photo-Optical Instrumentation Engineers (SPIE).

Références

Med Phys. 2019 Nov;46(11):4826-4836
pubmed: 31410861
Med Phys. 2022 Aug;49(8):5423-5438
pubmed: 35635844
J Med Imaging (Bellingham). 2019 Jul;6(3):031407
pubmed: 30766895
J Med Imaging (Bellingham). 2018 Jan;5(1):013502
pubmed: 29430472
Med Phys. 2011 Dec;38(12):6643-53
pubmed: 22149846
Med Phys. 2017 Jan;44(1):43-56
pubmed: 28044312
Med Phys. 2007 Feb;34(2):564-76
pubmed: 17388174
Med Phys. 2019 Jul;46(7):3142-3155
pubmed: 31077390
Phys Med Biol. 2015 Aug 21;60(16):6323-54
pubmed: 26237154
Med Phys. 2013 Nov;40(11):111919
pubmed: 24320452
Med Phys. 2009 Mar;36(3):920-8
pubmed: 19378752
Med Phys. 2016 Apr;43(4):1720
pubmed: 27036570
Phys Med Biol. 2010 Aug 7;55(15):4335-59
pubmed: 20647608
Med Phys. 2009 Oct;36(10):4425-32
pubmed: 19928073
JAMA Netw Open. 2018 Nov 2;1(7):e185474
pubmed: 30646401
Phys Med Biol. 2021 Feb 02;66(4):045001
pubmed: 33296884
Med Phys. 2003 Jul;30(7):1712-8
pubmed: 12906188
Med Phys. 2005 Dec;32(12):3767-76
pubmed: 16475776
Phys Med Biol. 2019 Jul 11;64(14):145003
pubmed: 31117060
Phys Med Biol. 2004 Oct 7;49(19):4543-61
pubmed: 15552416
Eur J Nucl Med Mol Imaging. 2020 Dec;47(13):2956-2967
pubmed: 32415551
Med Phys. 2007 Jan;34(1):221-32
pubmed: 17278508
Br J Radiol. 2010 Apr;83(988):344-50
pubmed: 19505964
Phys Med Biol. 2014 Aug 7;59(15):4375-90
pubmed: 25049201
Med Phys. 2005 Nov;32(11):3395-408
pubmed: 16372415
Eur J Radiol. 2015 Dec;84(12):2501-8
pubmed: 26456307
Med Phys. 2012 Jun;39(6):3167-80
pubmed: 22755701
Eur J Radiol. 2016 Feb;85(2):507-8
pubmed: 26625955
Radiographics. 1991 Mar;11(2):307-23
pubmed: 2028065
Phys Med Biol. 2009 Jul 21;54(14):4533-45
pubmed: 19556683
Med Phys. 2000 Aug;27(8):1818-31
pubmed: 10984229

Auteurs

Xiaoyu Duan (X)

Stony Brook Medicine, Department of Radiology, Stony Brook, New York, United States.

Pranjal Sahu (P)

Stony Brook University, Department of Computer Science, Stony Brook, New York, United States.

Hailiang Huang (H)

Stony Brook Medicine, Department of Radiology, Stony Brook, New York, United States.

Wei Zhao (W)

Stony Brook Medicine, Department of Radiology, Stony Brook, New York, United States.

Classifications MeSH