Deep-learning convolutional neural network-based scatter correction for contrast enhanced digital breast tomosynthesis in both cranio-caudal and mediolateral-oblique views.
contrast-enhanced digital breast tomosynthesis
convolutional neural network
scatter correction
Journal
Journal of medical imaging (Bellingham, Wash.)
ISSN: 2329-4302
Titre abrégé: J Med Imaging (Bellingham)
Pays: United States
ID NLM: 101643461
Informations de publication
Date de publication:
Feb 2023
Feb 2023
Historique:
received:
08
08
2022
accepted:
17
02
2023
pmc-release:
15
03
2024
entrez:
20
3
2023
pubmed:
21
3
2023
medline:
21
3
2023
Statut:
ppublish
Résumé
Scatter radiation in contrast-enhanced digital breast tomosynthesis (CEDBT) reduces the image quality and iodinated lesion contrast. Monte Carlo simulation can provide accurate scatter estimation at the cost of computational burden. A model-based convolutional method trades off accuracy for processing speed. The purpose of this study is to develop a fast and robust deep-learning (DL) convolutional neural network (CNN)-based scatter correction method for CEDBT. Projection images and scatter maps of digital anthropomorphic breast phantoms were generated using Monte Carlo simulations. Experiments were conducted to validate the simulated scatter-to-primary ratio (SPR) at different locations of a breast phantom. Simulated projection images were used for CNN training and testing. Two separate U-Nets [low-energy (LE)-CNN and high-energy (HE)-CNN] were trained for LE and HE spectrum, respectively. CNN-based scatter correction was applied to a clinical case with a malignant iodinated mass to evaluate the influence on the lesion detection. The average and standard deviation of mean absolute percentage error of LE-CNN and HE-CNN estimated scatter map are We developed a CNN-based scatter correction method for CEDBT in both CC view and mediolateral-oblique view with high accuracy and fast speed.
Identifiants
pubmed: 36937988
doi: 10.1117/1.JMI.10.S2.S22404
pii: 22209SSR
pmc: PMC10016368
doi:
Types de publication
Journal Article
Langues
eng
Pagination
S22404Informations de copyright
© 2023 Society of Photo-Optical Instrumentation Engineers (SPIE).
Références
Med Phys. 2019 Nov;46(11):4826-4836
pubmed: 31410861
Med Phys. 2022 Aug;49(8):5423-5438
pubmed: 35635844
J Med Imaging (Bellingham). 2019 Jul;6(3):031407
pubmed: 30766895
J Med Imaging (Bellingham). 2018 Jan;5(1):013502
pubmed: 29430472
Med Phys. 2011 Dec;38(12):6643-53
pubmed: 22149846
Med Phys. 2017 Jan;44(1):43-56
pubmed: 28044312
Med Phys. 2007 Feb;34(2):564-76
pubmed: 17388174
Med Phys. 2019 Jul;46(7):3142-3155
pubmed: 31077390
Phys Med Biol. 2015 Aug 21;60(16):6323-54
pubmed: 26237154
Med Phys. 2013 Nov;40(11):111919
pubmed: 24320452
Med Phys. 2009 Mar;36(3):920-8
pubmed: 19378752
Med Phys. 2016 Apr;43(4):1720
pubmed: 27036570
Phys Med Biol. 2010 Aug 7;55(15):4335-59
pubmed: 20647608
Med Phys. 2009 Oct;36(10):4425-32
pubmed: 19928073
JAMA Netw Open. 2018 Nov 2;1(7):e185474
pubmed: 30646401
Phys Med Biol. 2021 Feb 02;66(4):045001
pubmed: 33296884
Med Phys. 2003 Jul;30(7):1712-8
pubmed: 12906188
Med Phys. 2005 Dec;32(12):3767-76
pubmed: 16475776
Phys Med Biol. 2019 Jul 11;64(14):145003
pubmed: 31117060
Phys Med Biol. 2004 Oct 7;49(19):4543-61
pubmed: 15552416
Eur J Nucl Med Mol Imaging. 2020 Dec;47(13):2956-2967
pubmed: 32415551
Med Phys. 2007 Jan;34(1):221-32
pubmed: 17278508
Br J Radiol. 2010 Apr;83(988):344-50
pubmed: 19505964
Phys Med Biol. 2014 Aug 7;59(15):4375-90
pubmed: 25049201
Med Phys. 2005 Nov;32(11):3395-408
pubmed: 16372415
Eur J Radiol. 2015 Dec;84(12):2501-8
pubmed: 26456307
Med Phys. 2012 Jun;39(6):3167-80
pubmed: 22755701
Eur J Radiol. 2016 Feb;85(2):507-8
pubmed: 26625955
Radiographics. 1991 Mar;11(2):307-23
pubmed: 2028065
Phys Med Biol. 2009 Jul 21;54(14):4533-45
pubmed: 19556683
Med Phys. 2000 Aug;27(8):1818-31
pubmed: 10984229