Microscopic versus Macroscopic Glass Transitions and Relevant Length Scales in Mixtures of Industrial Interest.


Journal

Macromolecules
ISSN: 0024-9297
Titre abrégé: Macromolecules
Pays: United States
ID NLM: 0365316

Informations de publication

Date de publication:
14 Mar 2023
Historique:
received: 21 11 2022
revised: 13 02 2023
entrez: 20 3 2023
pubmed: 21 3 2023
medline: 21 3 2023
Statut: epublish

Résumé

We have combined X-ray diffraction, neutron diffraction with polarization analysis, small-angle neutron scattering (SANS), neutron elastic fixed window scans (EFWS), and differential scanning calorimetry (DSC) to investigate polymeric blends of industrial interest composed by isotopically labeled styrene-butadiene rubber (SBR) and polystyrene (PS) oligomers of size smaller than the Kuhn length. The EFWS are sensitive to the onset of liquid-like motions across the calorimetric glass transition, allowing the selective determination of the "microscopic" effective glass transitions of the components. These are compared with the "macroscopic" counterparts disentangled by the analysis of the DSC results in terms of a model based on the effects of thermally driven concentration fluctuations and self-concentration. At the microscopic level, the mixtures are dynamically heterogeneous for blends with intermediate concentrations or rich in PS, while the sample with highest content of the fast SBR component looks as dynamically homogeneous. Moreover, the combination of SANS and DSC has allowed determining the relevant length scale for the α-relaxation through its loss of equilibrium to be ≈30 Å. This is compared with the different characteristic length scales that can be identified in these complex mixtures from structural, thermodynamical, and dynamical points of view because of the combined approach followed. We also discuss the sources of the non-Gaussian effects observed for the atomic displacements and the applicability of a Lindemann-like criterion in these materials.

Identifiants

pubmed: 36938513
doi: 10.1021/acs.macromol.2c02368
pmc: PMC10019463
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2149-2163

Informations de copyright

© 2023 The Authors. Published by American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 1):051802
pubmed: 12786170
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9361-9366
pubmed: 28808004
J Chem Phys. 2004 Aug 15;121(7):3282-94
pubmed: 15291640
Phys Rev Lett. 2000 Nov 13;85(20):4293-6
pubmed: 11060621
Phys Rev Lett. 2010 Mar 5;104(9):098101
pubmed: 20367013
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):2990-4
pubmed: 10737779
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021508
pubmed: 20866819
J Mol Biol. 1999 Jan 29;285(4):1371-5
pubmed: 9917381
Soft Matter. 2007 Nov 14;3(12):1474-1485
pubmed: 32900101
Science. 1995 Mar 31;267(5206):1939-45
pubmed: 17770103
Macromolecules. 2022 Sep 13;55(17):7614-7625
pubmed: 36118597
Science. 2005 Dec 16;310(5755):1797-800
pubmed: 16357256
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041804
pubmed: 12005863
Science. 1995 Mar 31;267(5206):1935-9
pubmed: 17770102
Faraday Discuss. 2016;186:325-43
pubmed: 26791776
Sci Rep. 2021 Jul 8;11(1):14093
pubmed: 34238981
J Chem Phys. 2008 Jun 14;128(22):224905
pubmed: 18554051
Sci Rep. 2019 Aug 2;9(1):11284
pubmed: 31375739
Biochim Biophys Acta. 2005 Jun 1;1749(2):173-86
pubmed: 15893505
Phys Rev Lett. 2009 Oct 30;103(18):185702
pubmed: 19905814
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031507
pubmed: 12689073
Phys Rev B Condens Matter. 1996 Feb 1;53(5):2171-2174
pubmed: 9983702
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):4626-4641
pubmed: 9963176
J Chem Phys. 2013 Jul 28;139(4):045105
pubmed: 23902030
Sci Rep. 2020 Apr 14;10(1):6350
pubmed: 32286403

Auteurs

Numera Shafqat (N)

Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain.
Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, F-63040 Cedex 9, Clermont-Ferrand, France.

Angel Alegría (A)

Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain.
Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20018 San Sebastián, Spain.

Nicolas Malicki (N)

Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, F-63040 Cedex 9, Clermont-Ferrand, France.

Séverin Dronet (S)

Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, F-63040 Cedex 9, Clermont-Ferrand, France.

Francesca Natali (F)

CNR-IOM, OGG, 71 avenue des Martyrs, 38043 Cedex 9, Grenoble, France.

Lucile Mangin-Thro (L)

Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France.

Lionel Porcar (L)

Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France.

Arantxa Arbe (A)

Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain.

Juan Colmenero (J)

Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain.
Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20018 San Sebastián, Spain.
Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain.

Classifications MeSH