Uncovering spatiotemporal patterns of atrophy in progressive supranuclear palsy using unsupervised machine learning.

Subtype and Stage Inference biomarkers disease progression machine learning progressive supranuclear palsy

Journal

Brain communications
ISSN: 2632-1297
Titre abrégé: Brain Commun
Pays: England
ID NLM: 101755125

Informations de publication

Date de publication:
2023
Historique:
received: 22 08 2022
revised: 22 11 2022
accepted: 27 02 2023
entrez: 20 3 2023
pubmed: 21 3 2023
medline: 21 3 2023
Statut: epublish

Résumé

To better understand the pathological and phenotypic heterogeneity of progressive supranuclear palsy and the links between the two, we applied a novel unsupervised machine learning algorithm (Subtype and Stage Inference) to the largest MRI data set to date of people with clinically diagnosed progressive supranuclear palsy (including progressive supranuclear palsy-Richardson and variant progressive supranuclear palsy syndromes). Our cohort is comprised of 426 progressive supranuclear palsy cases, of which 367 had at least one follow-up scan, and 290 controls. Of the progressive supranuclear palsy cases, 357 were clinically diagnosed with progressive supranuclear palsy-Richardson, 52 with a progressive supranuclear palsy-cortical variant (progressive supranuclear palsy-frontal, progressive supranuclear palsy-speech/language, or progressive supranuclear palsy-corticobasal), and 17 with a progressive supranuclear palsy-subcortical variant (progressive supranuclear palsy-parkinsonism or progressive supranuclear palsy-progressive gait freezing). Subtype and Stage Inference was applied to volumetric MRI features extracted from baseline structural (T1-weighted) MRI scans and then used to subtype and stage follow-up scans. The subtypes and stages at follow-up were used to validate the longitudinal consistency of subtype and stage assignments. We further compared the clinical phenotypes of each subtype to gain insight into the relationship between progressive supranuclear palsy pathology, atrophy patterns, and clinical presentation. The data supported two subtypes, each with a distinct progression of atrophy: a 'subcortical' subtype, in which early atrophy was most prominent in the brainstem, ventral diencephalon, superior cerebellar peduncles, and the dentate nucleus, and a 'cortical' subtype, in which there was early atrophy in the frontal lobes and the insula alongside brainstem atrophy. There was a strong association between clinical diagnosis and the Subtype and Stage Inference subtype with 82% of progressive supranuclear palsy-subcortical cases and 81% of progressive supranuclear palsy-Richardson cases assigned to the subcortical subtype and 82% of progressive supranuclear palsy-cortical cases assigned to the cortical subtype. The increasing stage was associated with worsening clinical scores, whilst the 'subcortical' subtype was associated with worse clinical severity scores compared to the 'cortical subtype' (progressive supranuclear palsy rating scale and Unified Parkinson's Disease Rating Scale). Validation experiments showed that subtype assignment was longitudinally stable (95% of scans were assigned to the same subtype at follow-up) and individual staging was longitudinally consistent with 90% remaining at the same stage or progressing to a later stage at follow-up. In summary, we applied Subtype and Stage Inference to structural MRI data and empirically identified two distinct subtypes of spatiotemporal atrophy in progressive supranuclear palsy. These image-based subtypes were differentially enriched for progressive supranuclear palsy clinical syndromes and showed different clinical characteristics. Being able to accurately subtype and stage progressive supranuclear palsy patients at baseline has important implications for screening patients on entry to clinical trials, as well as tracking disease progression.

Identifiants

pubmed: 36938523
doi: 10.1093/braincomms/fcad048
pii: fcad048
pmc: PMC10016410
doi:

Types de publication

Journal Article

Langues

eng

Pagination

fcad048

Subventions

Organisme : NIA NIH HHS
ID : L30 AG069301
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00005/12
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M008525/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T027800/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/Y008219/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T046015/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : K23 AG073514
Pays : United States

Investigateurs

Alyssa A Costantini (AA)
Henry Houlden (H)
Christopher Kobylecki (C)
Michele T M Hu (MTM)
Nigel Leigh (N)
Bradley F Boeve (BF)
Brad C Dickerson (BC)
Carmela M Tartaglia (CM)
Irene Litvan (I)
Murray Grossman (M)
Alex Pantelyat (A)
Edward D Huey (ED)
David J Irwin (DJ)
Anne Fagan (A)
Suzanne L Baker (SL)
Arthur W Toga (AW)

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.

Références

Ann Neurol. 2018 Oct;84(4):485-496
pubmed: 30066433
Mov Disord. 2019 Aug;34(8):1144-1153
pubmed: 30726566
Brain. 2005 Jun;128(Pt 6):1247-58
pubmed: 15788542
Nat Commun. 2021 Apr 6;12(1):2078
pubmed: 33824310
Mov Disord. 2011 Feb 1;26(2):247-55
pubmed: 21412831
J Neuropathol Exp Neurol. 2014 Mar;73(3):244-52
pubmed: 24487796
JAMA Neurol. 2016 Jun 1;73(6):733-42
pubmed: 27111692
Mov Disord. 2016 Apr;31(4):593-6
pubmed: 26861697
Lancet Neurol. 2014 Jul;13(7):676-85
pubmed: 24873720
Neuropathology. 2011 Feb;31(1):77-81
pubmed: 20573028
Parkinsonism Relat Disord. 2013 Nov;19(11):980-5
pubmed: 23968651
Multimodal Brain Image Anal Math Found Comput Anat (2019). 2019 Oct;11846:112-120
pubmed: 33537683
Nat Med. 2021 Aug;27(8):1451-1457
pubmed: 34385707
Mov Disord. 2017 Jun;32(6):853-864
pubmed: 28467028
J Neurol. 2014 Aug;261(8):1575-83
pubmed: 24888315
Eur J Neurol. 2022 Aug;29(8):2220-2231
pubmed: 35384155
Mov Disord Clin Pract. 2019 May 29;6(6):452-461
pubmed: 31392246
Neuroimage Clin. 2020;25:102152
pubmed: 31935638
JAMA Neurol. 2020 Nov 1;77(11):1408-1419
pubmed: 33165511
Brain. 2008 May;131(Pt 5):1362-72
pubmed: 18385183
Neurol Sci. 2021 Dec;42(12):4927-4936
pubmed: 34532773
Parkinsonism Relat Disord. 2011 Jun;17(5):365-71
pubmed: 21420891
Acta Neuropathol. 2009 Apr;117(4):429-44
pubmed: 19194716
Neurology. 2021 Aug 31;97(9):e941-e952
pubmed: 34158384
Front Neurol. 2022 Feb 25;13:814768
pubmed: 35280291
Ann Clin Transl Neurol. 2020 Sep;7(9):1702-1707
pubmed: 32735745
Nat Rev Neurol. 2021 Oct;17(10):601-620
pubmed: 34426686
Sci Rep. 2017 May 25;7(1):2418
pubmed: 28546533
J Nippon Med Sch. 2015;82(6):266-73
pubmed: 26823029
PLoS One. 2016 Jun 16;11(6):e0157218
pubmed: 27310132
J Neural Transm (Vienna). 2022 Sep;129(9):1133-1153
pubmed: 35695938
Acta Neuropathol. 2013 Sep;126(3):365-84
pubmed: 23900711
Mov Disord. 2017 Jun;32(6):842-852
pubmed: 28436538
Parkinsonism Relat Disord. 2019 Sep;66:87-93
pubmed: 31307919
Acta Neuropathol. 2017 May;133(5):809-823
pubmed: 28064358
Mov Disord Clin Pract. 2020 Apr 10;7(4):440-447
pubmed: 32373661
Neurology. 2022 Apr 26;98(17):e1692-e1703
pubmed: 35292558
Neurodegener Dis. 2008;5(6):339-46
pubmed: 18349518
Neuroimage. 2009 May 15;46(1):39-46
pubmed: 19457380
Brain Commun. 2022 May 12;4(3):fcac113
pubmed: 35602651
Front Aging Neurosci. 2015 Sep 29;7:180
pubmed: 26483680
Mov Disord. 2020 Apr;35(4):650-661
pubmed: 31951049
Mov Disord. 2014 Dec;29(14):1758-66
pubmed: 25370486
Neurology. 2016 Nov 8;87(19):2016-2025
pubmed: 27742814
Eur J Neurosci. 2010 Aug;32(4):640-7
pubmed: 20597976
Nat Commun. 2018 Oct 15;9(1):4273
pubmed: 30323170
J Neural Transm (Vienna). 2011 Aug;118(8):1191-7
pubmed: 21207078
Brain Commun. 2022 Apr 14;4(3):fcac098
pubmed: 35602649
J Neurol. 2020 Mar;267(3):752-759
pubmed: 31745723
Neuroimage. 2015 Jun;113:184-95
pubmed: 25776214
Lancet Neurol. 2021 Feb;20(2):107-116
pubmed: 33341150
Mov Disord. 2020 Jan;35(1):171-176
pubmed: 31571273
Brain. 2007 Jun;130(Pt 6):1566-76
pubmed: 17525140
Brain. 2005 Oct;128(Pt 10):2272-80
pubmed: 16014651
J Neural Transm (Vienna). 2016 Dec;123(12):1435-1442
pubmed: 27334897
IEEE Trans Med Imaging. 2015 Sep;34(9):1976-88
pubmed: 25879909
Lancet Neurol. 2021 Mar;20(3):182-192
pubmed: 33609476
Front Neurol. 2017 Oct 10;8:519
pubmed: 29066997
Neurology. 2003 Mar 25;60(6):910-6
pubmed: 12654952
JAMA Neurol. 2020 Mar 1;77(3):377-387
pubmed: 31860007
Mov Disord. 2019 Aug;34(8):1228-1232
pubmed: 30884545
Mov Disord. 2019 Sep;34(9):1284-1293
pubmed: 31283855
Parkinsonism Relat Disord. 2019 Dec;69:34-39
pubmed: 31665686
SoftwareX. 2021 Dec;16:
pubmed: 34926780
Parkinsonism Relat Disord. 2021 Mar;84:77-81
pubmed: 33581485
Nat Med. 2021 May;27(5):871-881
pubmed: 33927414
Acta Neuropathol. 2020 Aug;140(2):99-119
pubmed: 32383020

Auteurs

William J Scotton (WJ)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.

Cameron Shand (C)

Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK.

Emily Todd (E)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.

Martina Bocchetta (M)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.

David M Cash (DM)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.

Lawren VandeVrede (L)

Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA.

Hilary Heuer (H)

Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA.

Alexandra L Young (AL)

Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.

Neil Oxtoby (N)

Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK.

Daniel C Alexander (DC)

Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK.

James B Rowe (JB)

Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 0QQ, UK.

Huw R Morris (HR)

Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK.
Movement Disorders Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK.

Adam L Boxer (AL)

Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA.

Jonathan D Rohrer (JD)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.

Peter A Wijeratne (PA)

Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK.

Classifications MeSH