Far-Red Interlayer Excitons of Perovskite/Quantum-Dot Heterostructures.
charge transfer
far-red
interlayer exciton
optoelectronics
perovskite
quantum dots
Journal
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
ISSN: 2198-3844
Titre abrégé: Adv Sci (Weinh)
Pays: Germany
ID NLM: 101664569
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
revised:
16
02
2023
received:
26
12
2022
medline:
21
3
2023
pubmed:
21
3
2023
entrez:
20
3
2023
Statut:
ppublish
Résumé
Interlayer excitons (IXs) at the interface of heterostructures (HSs) with a staggered band alignment are fascinating quantum quasi-particles with light-emitting and long-lifetime characteristics. In this study, the energy band alignments (EBAs) of the HS of MAPbI
Identifiants
pubmed: 36938849
doi: 10.1002/advs.202207653
pmc: PMC10190583
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2207653Subventions
Organisme : National Research Foundation
Organisme : Korean government
ID : 2021R1A2C2005885
Organisme : Korean government
ID : 2022R1A2C2009412
Informations de copyright
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Références
ACS Nano. 2012 Jun 26;6(6):4984-92
pubmed: 22686521
Nat Mater. 2014 Sep;13(9):897-903
pubmed: 24997740
Phys Rev B Condens Matter. 1992 Apr 15;45(16):8989-8994
pubmed: 10000759
Phys Rev Lett. 2014 Aug 15;113(7):076802
pubmed: 25170725
Light Sci Appl. 2021 Apr 2;10(1):72
pubmed: 33811214
J Phys Chem Lett. 2020 Jan 2;11(1):121-128
pubmed: 31820989
Science. 2015 Jan 30;347(6221):519-22
pubmed: 25635092
Nat Commun. 2019 Sep 2;10(1):3913
pubmed: 31477714
Nat Nanotechnol. 2014 Sep;9(9):687-92
pubmed: 25086602
Adv Mater. 2022 Jun;34(25):e2107138
pubmed: 34700359
Adv Sci (Weinh). 2022 Jan;9(2):e2102258
pubmed: 34845861
Science. 2016 Feb 12;351(6274):688-91
pubmed: 26912854
Science. 2013 Jun 14;340(6138):1311-4
pubmed: 23641062
J Colloid Interface Sci. 2021 May 15;590:19-27
pubmed: 33524717
Sci Adv. 2018 Jan 12;4(1):eaao3104
pubmed: 29340303
Science. 2013 Oct 18;342(6156):341-4
pubmed: 24136964
Nat Commun. 2017 Jun 26;8(1):34
pubmed: 28652597
Adv Sci (Weinh). 2023 May;10(14):e2207653
pubmed: 36938849
Adv Mater. 2015 Jan 7;27(1):41-6
pubmed: 25327379
Sci Adv. 2016 Jan 22;2(1):e1501104
pubmed: 26844299
J Phys Chem Lett. 2019 Jun 6;10(11):2971-2977
pubmed: 31091105
Nano Lett. 2017 Sep 13;17(9):5229-5237
pubmed: 28742367
Nat Commun. 2018 Aug 30;9(1):3541
pubmed: 30166537
ACS Nano. 2020 Aug 25;14(8):10258-10264
pubmed: 32806069
Science. 2019 Nov 15;366(6467):870-875
pubmed: 31727834
Sci Rep. 2016 Oct 21;6:35685
pubmed: 27767049
Nature. 2019 Mar;567(7746):76-80
pubmed: 30804525
Phys Chem Chem Phys. 2015 Jul 7;17(25):16405-11
pubmed: 26051631
Nat Nanotechnol. 2020 Aug;15(8):675-682
pubmed: 32601449
Nat Nanotechnol. 2014 Sep;9(9):676-81
pubmed: 25108809
Nature. 2018 Aug;560(7718):340-344
pubmed: 30046107
Nat Commun. 2015 Feb 24;6:6242
pubmed: 25708612
J Phys Chem Lett. 2016 Jul 7;7(13):2316-21
pubmed: 27269590
ACS Nano. 2016 Mar 22;10(3):3536-42
pubmed: 26910395
Phys Rev Lett. 2019 Dec 13;123(24):247402
pubmed: 31922842
Nat Nanotechnol. 2018 Nov;13(11):974-976
pubmed: 30397289
Nat Mater. 2018 Jun;17(6):550-556
pubmed: 29760510
Adv Sci (Weinh). 2019 Apr 02;6(11):1802092
pubmed: 31179209
ACS Omega. 2019 May 23;4(5):9102-9112
pubmed: 31459998