Predicting the shape, size, and placement of adult human pubic symphyses.
pelvis
predictive modeling
pubic symphysis
skeletal morphology
Journal
American journal of biological anthropology
ISSN: 2692-7691
Titre abrégé: Am J Biol Anthropol
Pays: United States
ID NLM: 101770171
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
03
02
2023
received:
06
11
2022
accepted:
27
02
2023
medline:
19
5
2023
pubmed:
21
3
2023
entrez:
20
3
2023
Statut:
ppublish
Résumé
When reconstructing fossil pelves, the articulation of the pelvic bones largely relies on subjective decisions by researchers. Different positionings at the pubic symphysis can affect the overall morphology of the pelvis and the subsequent biological interpretation associated with that individual or species. This study aims to reduce this subjectivity using quantitative models to predict pubic symphysis morphology. We collected 3D landmarks and semilandmarks on the pubic symphysis and adjacent aspects on the CT scans of 103 adults. Using geometric morphometrics we, (1) quantified pubic symphysis morphology, (2) trained simple and two-stage least-squares linear regression models to predict pubic symphysis shape, and (3) assessed the shape variation in the sample. The model with the lowest prediction error was identified as the best model. Principal components analysis was used to explore the effects of each variable on shape and hypothetical shapes were generated from the model to illustrate these effects. The best model is a two-stage least-squares model that predicts pubic symphysis size at the first stage using additive effects of sex and age, then subsequently interacts pubic symphysis size with sex and age at the second stage to predict pubic symphysis shape. Other models with low prediction errors included variables reflecting pelvic size and breadth. Linear regression modeling can be used to systematically predict pubic symphysis morphology. This method can be used in addition to other techniques to improve fossil reconstructions by more accurately estimating the morphology of this region of the pelvis.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
182-194Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Adams, D. C., & Otárola-Castillo, E. (2013). geomorph: An r package for thecollection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4(4), 393-399. https://doi.org/10.1111/2041-210X.12035
Adegboyega, M. T., Stamos, P. A., Hublin, J.-J., & Weaver, T. D. (2021). Virtual reconstruction of the Kebara 2 Neanderthal pelvis. Journal of Human Evolution, 151, 102922. https://doi.org/10.1016/j.jhevol.2020.102922
Aeby, C. (1858). Über die Symphysis Ossium Pubis des Menschen: Nebst Beitragen zur Lehre vom hyalinen Knorpel und seiner Verknöcherung. Z Rationelle Med, 4, 1-25.
Alicioglu, B., Kartal, O., Gurbuz, H., & Sut, N. (2008). Symphysis pubis distance in adults: A retrospective computed tomography study. Surgical and Radiologic Anatomy, 30(2), 153-157. https://doi.org/10.1007/s00276-007-0295-0
Arsuaga, J. L., & Carretero, J. M. (1994). Multivariate analysis of the sexual dimorphism of the hip bone in a modern human population and in early hominids. American Journal of Physical Anthropology, 93(2), 241-257. https://doi.org/10.1002/ajpa.1330930208
Arsuaga, J. L., Lorenzo, C., Carretero, J. M., Gracia, A., Martínez, I., García, N., Bermúdez de Castro, J. M., & Carbonell, E. (1999). A complete human pelvis from the Middle Pleistocene of Spain. Nature, 399(6733), 255-258. https://doi.org/10.1038/20430
Aydın, S., Bakar, R. Z., Aydın, Ç. A., & Özcan, P. (2016). Assessment of postpartum symphysis pubis distention with 3D ultrasonography: A novel method. Clinical Imaging, 40(2), 185-190. https://doi.org/10.1016/j.clinimag.2015.10.015
Baken, E., Collyer, M., Kaliontzopoulou, A., & Adams, D. (2021). geomorph v4.0 and gmShiny: Enhanced analytics and a new graphicalinterface for a comprehensive morphometric experience. Methods in Ecology and Evolution, 12(12), 2355-2363. https://doi.org/10.1111/2041-210X.13723
Betti, L., von Cramon-Taubadel, N., Manica, A., & Lycett, S. J. (2013). Globalgeometric morphometric analyses of the human pelvis reveal substantial neutralpopulation history effects, even across sexes. PLoS One, 8(2), e55909. https://doi.org/10.1371/journal.pone.0055909
Bahlmann, F., Merz, E., Macchiella, D., & Weber, G. (1993). Sonographische darstellung des symphysenspaltes zur beurteilung eines symphysenschadens in der schwangerschaft und post partum. Zeitschrift Fur Geburtshilfe Und Perinatologie, 197(1), 27-30.
Barnes, M. J. (1934). The symphysis pubis in the female. American Journal of Rentogen, 32, 333-352 https://ci.nii.ac.jp/naid/10014839687/
Bauman, M., Marinaro, J., Tawil, I., Crandall, C., Rosenbaum, L., & Paul, I. (2011). Ultrasonographic determination of pubic symphyseal widening in trauma: The FAST-PS study. The Journal of Emergency Medicine, 40(5), 528-533. https://doi.org/10.1016/j.jemermed.2009.08.041
Becker, I., Stringer, M. D., Jeffery, R., & Woodley, S. J. (2014). Sonographic anatomy of the pubic symphysis in healthy nulliparous women. Clinical Anatomy, 27(7), 1058-1067. https://doi.org/10.1002/ca.22423
Becker, I., Woodley, S. J., & Stringer, M. D. (2010). The adult human pubic symphysis: A systematic review. Journal of Anatomy, 217(5), 475-487. https://doi.org/10.1111/j.1469-7580.2010.01300.x
Benazzi, S., Stansfield, E., Milani, C., & Gruppioni, G. (2009). Geometric morphometric methods for three-dimensional virtual reconstruction of a fragmented cranium: The case of Angelo Poliziano. International Journal of Legal Medicine, 123(4), 333-344. https://doi.org/10.1007/s00414-009-0339-6
Benjamin, M., & Evans, E. J. (1990). Fibrocartilage. Journal of Anatomy, 171, 1-15 https://www.ncbi.nlm.nih.gov/pmc/articles/pmc1257123/
Berge, C., & Goularas, D. (2010). A new reconstruction of Sts 14 pelvis (Australopithecus africanus) from computed tomography and three-dimensional modeling techniques. Journal of Human Evolution, 58(3), 262-272. https://doi.org/10.1016/j.jhevol.2009.11.006
Björklund, K., Bergström, S., Lindgren, P. G., & Ulmsten, U. (1996). Ultrasonographic measurement of the symphysis pubis: A potential method of studying symphyseolysis in pregnancy. Gynecologic and Obstetric Investigation, 42(3), 151-153.
Bonmatí, A., Gómez-Olivencia, A., Arsuaga, J. L., Carretero, J. M., Gracia, A., Martínez, I., Lorenzo, C., Bérmudez de Castro, J. M., & Carbonell, E. (2010). Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain. Proceedings of the National Academy of Sciences, 107(43), 18386-18391. https://doi.org/10.1073/pnas.1012131107
Bookstein, F. L., Gunz, P., Mitteroecker, P., Prossinger, H., Schaefer, K., & Seidler, H. (2003). Cranial integration in Homo: Singular warps analysis of the midsagittal plane in ontogeny and evolution. Journal of Human Evolution, 44(2), 167-187. https://doi.org/10.1016/S0047-2484(02)00201-4
Brassey, C. A., O'Mahoney, T. G., Chamberlain, A. T., & Sellers, W. I. (2018). A volumetric technique for fossil body mass estimation applied to Australopithecus afarensis. Journal of Human Evolution, 115, 47-64. https://doi.org/10.1016/j.jhevol.2017.07.014
Brooks, S., & Suchey, J. M. (1990). Skeletal age determination based on the os pubis: A comparison of the Acsadi-Nemeskeri and Suchey-Brooks methods. Human Evolution, 5(3), 227-238.
Bruzek, J. (2002). A method for visual determination of sex, using the human hip bone. American Journal of Physical Anthropology, 117(2), 157-168. https://doi.org/10.1002/ajpa.10012
Canty, A., & Ripley, B. (2016). boot: Bootstrap R (S-Plus) Functions. CRAN repository: Package “boot” (Version. 1.3-18).
Chiba, F., Makino, Y., Motomura, A., Inokuchi, G., Torimitsu, S., Ishii, N., Kubo, Y., Abe, H., Sakuma, A., Nagasawa, S., Saitoh, H., Yajima, D., Hayakawa, M., Miura, M., & Iwase, H. (2014). Age estimation by quantitative features of pubic symphysis using multidetector computed tomography. International Journal of Legal Medicine, 128(4), 667-673. https://doi.org/10.1007/s00414-014-1010-4
Claxton, A. G., Hammond, A. S., Romano, J., Oleinik, E., & DeSilva, J. M. (2016). Virtual reconstruction of the Australopithecus africanus pelvis Sts 65 with implications for obstetrics and locomotion. Journal of Human Evolution, 99, 10-24.
Cox, S. L. (2021). A geometric morphometric assessment of shape variation in adult pelvic morphology. American Journal of Physical Anthropology, 176(4), 652-671. https://doi.org/10.1002/ajpa.24399
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their applications. CambridgeUniversity Press.
Dryden, I., & Mardia, K. (1998). Statistical shape analysis: Wiley series in probability and statistics. John Wiley & Sons, Ltd.
Dudzik, B., & Langley, N. R. (2015). Estimating age from the pubic symphysis: A new component-based system. Forensic Science International, 257, 98-105. https://doi.org/10.1016/j.forsciint.2015.07.047
Fick, R. (1904). Handbuch der Anatomie und Mechanik der Gelenke unter Berücksichtigung der bewegenden Muskeln. In Erster Teil: Anatomie der Gelenke (Vol. 2). Verlag von Gustav Fischer.
Fischer, B., & Mitteroecker, P. (2015). Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma. Proceedings of the National Academy of Sciences, 112(18), 5655-5660. https://doi.org/10.1073/pnas.1420325112
Fox, J. (1979). Simultaneous equation models and two-stage least squares. Sociological Methodology, 10, 130-150. https://doi.org/10.2307/270769
Franklin, D. (2010). Forensic age estimation in human skeletal remains: Current concepts and future directions. Legal Medicine, 12(1), 1-7. https://doi.org/10.1016/j.legalmed.2009.09.001
Gamble, J. G., Simmons, S. C., & Freedman, M. (1986). The symphysis pubis. Anatomic and pathologic considerations. Clinical Orthopaedics and Related Research, 203, 261-272. https://doi.org/10.1097/00003086-198602000-00033
Garagiola, D., Tarver, R., Gibson, L., Rogers, R., & Wass, J. (1989). Anatomic changes in the pelvis after uncomplicated vaginal delivery: A CT study on 14 women. American Journal of Roentgenology, 153(6), 1239-1241. https://doi.org/10.2214/ajr.153.6.1239
García-Martínez, D., Barash, A., Recheis, W., Utrilla, C., Torres-Sánchez, I., García Río, F., & Bastir, M. (2014). On the chest size of Kebara 2. Journal of Human Evolution, 70(1), 69-72. https://doi.org/10.1016/j.jhevol.2014.02.003
Gilbert, B. M., & McKern, T. W. (1973). A method for aging the female os pubis. American Journal of Physical Anthropology, 38(1), 31-38. https://doi.org/10.1002/ajpa.1330380109
Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society: Series B (Methodological), 53(2), 285-321. https://doi.org/10.1111/j.2517-6161.1991.tb01825.x
Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 33-51. https://doi.org/10.1007/BF02291478
Gruss, L. T., & Schmitt, D. (2015). The evolution of the human pelvis: Changing adaptations to bipedalism, obstetrics and thermoregulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1663), 20140063. https://doi.org/10.1098/rstb.2014.0063
Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: A method for quantifying curves and surfaces. Hystrix, the Italian Journal of Mammalogy, 24(1), 103-109. https://doi.org/10.4404/hystrix-24.1-6292
Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D.E. Slice (Eds.), Modern Morphometrics in Physical Anthropology.(pp. 73-98). Springer, Boston, MA. https://doi.org/10.1007/0-387-27614-9_3
Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W., & Bookstein, F. L. (2009). Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57(1), 48-62. https://doi.org/10.1016/j.jhevol.2009.04.004
Häusler, M., & Schmid, P. (1995). Comparison of the pelves of Sts 14 and AL288-1: Implications for birth and sexual dimorphism in Australopithecines. Journal of Human Evolution, 29(4), 363-383. https://doi.org/10.1006/jhev.1995.1063
Huseynov, A., Zollikofer, C. P. E., Coudyzer, W., Gascho, D., Kellenberger, C., Hinzpeter, R., & Ponce de León, M. S. (2016). Developmental evidence for obstetric adaptation of the human female pelvis. Proceedings of the National Academy of Sciences, 113(19), 5227-5232. https://doi.org/10.1073/pnas.1517085113
Hwang, K., Wu, X., & Park, C. Y. (2021). Width of pubic symphysis relating to age and sex in Koreans. Journal of Orthopaedic Surgery and Research, 16(1), 1-11.
Kaplan, D. (2009). Structural equation modeling. In Foundations and extensions (Vol. 1-10, 2nd ed.). SAGE Publications, Inc.. https://doi.org/10.4135/9781452226576
Karasik, D., Arensburg, B., Tillier, A.-M., & Pavlovsky, O. M. (1998). Skeletal age assessment of fossil hominids. Journal of Archaeological Science, 25(7), 689-696. https://doi.org/10.1006/jasc.1997.0264
Klingenberg, C. P. (2016). Size, shape, and form: Concepts of allometry in geometric morphometrics. Development, Genes and Evolution, 226(3), 113-137. https://doi.org/10.1007/s00427-016-0539-2
Knox, R. (1830). A system of human anatomy translated from the fourth edition of the french “traite d'anatomie descriptive” of M.H. Cloquet (2nd ed., pp. 196-198). Wells and Lilly.
Kurki, H. K. (2011). Pelvic dimorphism in relation to body size and body size dimorphism in humans. Journal of Human Evolution, 61(6), 631-643. https://doi.org/10.1016/j.jhevol.2011.07.006
Lei, J., Zhang, Y., Wu, G., Wang, Z., & Cai, X. (2015). The influence of pelvic ramus fracture on the stability of fixed pelvic complex fracture. Computational and Mathematical Methods in Medicine, 2015, 1-11. https://doi.org/10.1155/2015/790575
Lewton, K. L. (2015). Allometric scaling and locomotor function in the primate pelvis. American Journal of Physical Anthropology, 156(4), 511-530. https://doi.org/10.1002/ajpa.22696
Li, Y. (2002). Postnatal development of pelvic sexual dimorphism in four anthropoid primates (3046493). ProQuest Dissertations and Theses.
Li, Z., Kim, J.-E., Davidson, J. S., Etheridge, B. S., Alonso, J. E., & Eberhardt, A. W. (2007). Biomechanical response of the pubic symphysis in lateral pelvic impacts: A finite element study. Journal of Biomechanics, 40(12), 2758-2766. https://doi.org/10.1016/j.jbiomech.2007.01.023
Loeschcke, H. (1912). Untersuchungen über Entstehung und Bedeutung der Spaltbildungen in der Symphyse, sowie über physiologische Erweiterungsvorgänge am Becken Schwangerer und Gebärender. Archives of Gynecology and Obstetrics, 96(3), 525-560. https://doi.org/10.1007/BF02100216
Lottering, N., Reynolds, M. S., MacGregor, D. M., Meredith, M., & Gregory, L. S. (2014). Morphometric modeling of ageing in the human pubic symphysis: Sexual dimorphism in an Australian population. Forensic Science International, 236, 195.e1-195.e11. https://doi.org/10.1016/j.forsciint.2013.12.041
Lovejoy, C. O. (1979). Reconstruction of the pelvis of AL-288 (Hadar formation, Ethiopia). American Journal of Physical Anthropology, 50(3), 460.
McCown, T. D., & Keith, A. (1939). The stone age of Mount Carmel: The fossil human remains from the Levalloiso-Mousterian (Vol. II). Clarendon Press.
Meissner, A., Fell, M., Wilk, R., Boenick, U., & Rahmanzadeh, R. (1996). Biomechanics of the pubic symphysis. Which forces lead to mobility of the symphysis in physiological conditions? Der Unfallchirurg, 99(6), 415-421.
Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36(2), 235-247. https://doi.org/10.1007/S11692-009-9055-X
Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46(6), 679-698. https://doi.org/10.1016/j.jhevol.2004.03.006
Morante, G. B., Fischer, B., López, M. C. B., & Bastir, M. (2021). The outline of the pubic symphyseal surface is sexually dimorphic and changes with age in humans. Journal of Anthropological Sciences, 99, 83-95. https://doi.org/10.4436/jass.99003
Neumann, D. A. (2016). Kinesiology of the musculoskeletal system foundations for rehabilitation (3rd ed., p. 595). Pagina.
O'Higgins, P., Cobb, S. N., Fitton, L. C., Gröning, F., Phillips, R., Liu, J., & Fagan, M. J. (2011). Combining geometric morphometrics and functional simulation: An emerging toolkit for virtual functional analyses. Journal of Anatomy, 218(1), 3-15. https://doi.org/10.1111/j.1469-7580.2010.01301.x
Oligmüller, A.-K. (2015). Sonographic measurement of the width of the pubic symphysis during pregnancy and analysis of the influencing factors. (Doctoral dissertation). Freie Universität Berlin.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/
Rak, Y., & Arensburg, B. (1987). Kebara 2 Neanderthal pelvis: First look at a complete inlet. American Journal of Physical Anthropology, 73(2), 227-231. https://doi.org/10.1002/ajpa.1330730209
Roberts, R. E. (1934). Discussion on the physiology and pathology of the pelvic joints in relation to child-bearing. Proceedings of the Royal Society of Medicine, 17, 1211-1217.
Rohlf, F. J., & Slice, D. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40-59. https://doi.org/10.2307/2992207
Rosenberg, K. R. (1998). Morphological variation in West Asian postcrania: Implications for obstetric and locomotor behavior. In T. Akazawa, K. Aoki, & O. Bar-Yosef (Eds.), Neandertals and modern humans in Western Asia (pp. 367-380). Plenum Press.
Schlager, S., Jefferis, G., & Dryden, I. L. (2021). Morpho: Calculations and visualisation related to geometric morphometrics. In CRAN repository: Package “Morpho” (Version 2.9).
Schlager, S., Profico, A., di Vincenzo, F., & Manzi, G. (2018). Retrodeformation of fossil specimens based on 3D bilateral semi-landmarks: Implementation in the R package “Morpho”. PLoS One, 13(3), e0194073. https://doi.org/10.1371/journal.pone.0194073
Schmid, P. (1983). A reconstruction of the skeleton of A.L. 288-1 (Hadar) and its consequences. Folia Primatologica; International Journal of Primatology, 40(4), 283-306. https://doi.org/10.1159/000156111
Schoellner, C., Szöke, N., & Siegburg, K. (2001). Der schwangerschaftsassoziierte symphysenschaden aus orthopädischer sicht - untersuchungen zu veränderungen an der symphysis pubica in der schwangerschaft, unter der geburt und post partum. Zeitschrift für Orthopädie und Ihre Grenzgebiete, 139(5), 458-462. https://doi.org/10.1055/s-2001-17991
Slice, D. (2005). Modern morphometrics in physical anthropology. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 1- 45). Springer, Boston, MA. https://doi.org/10.1007/0-387-27614-9
Slice, D. E. (2007). Geometric Morphometrics. Annual Review of Anthropology, 36(1), 261-281. https://doi.org/10.1146/annurev.anthro.34.081804.120613
Standring, S. (2021). Gray's anatomy e-book: The anatomical basis of clinical practice (42nd ed.). Elsevier Health Sciences.
Tague, R. G. (1992). Sexual dimorphism in the human bony pelvis, with a consideration of the Neandertal pelvis from Kebara cave, Israel. American Journal of Physical Anthropology, 88(1), 1-21.
Tague, R. G. (1993). Pubic symphyseal synostosis and sexual dimorphism of the pelvis in Presbytis cristata and Presbytis rubicunda. International Journal of Primatology, 14(4), 637-654. https://doi.org/10.1007/BF02215452
Tague, R. G., & Lovejoy, C. O. (1986). The obstetric pelvis of AL 288-1 (Lucy). Journal of Human Evolution, 15(4), 237-255.
Tanner, J. B., Zelditch, M. L., Lundrigan, B. L., & Holekamp, K. E. (2010). Ontogenetic change in skull morphology and mechanical advantage in the spotted hyena (Crocuta crocuta). Journal of Morphology, 271(3), 353-365. https://doi.org/10.1002/JMOR.10802
Testus, J., & Latarjet, A. (1928). Traité d'Anatomie humaine (8th ed.). Doin.
Thermo Fisher Scientific. (2018). Avizo software 9 user's guide. Waltham, MA, USA.
Todd, T. W. (1920). Age changes in the pubic bone I. The male white pubis. American Journal of Physical Anthropology, 3(3), 285-344.
Todd, T. W. (1930). Age changes in the pubic bone. VIII. Roentgenographic differentiation. American Journal of Physical Anthropology, 14(2), 255-271. https://doi.org/10.1002/ajpa.1330140205
Torres-Tamayo, N., Schlager, S., García-Martínez, D., Sanchis-Gimeno, J. A., Nalla, S., Ogihara, N., Oishi, M., Martelli, S., & Bastir, M. (2020). Three-dimensional geometric morphometrics of thorax-pelvis covariation and its potential for predicting the thorax morphology: A case study on Kebara 2 Neandertal. Journal of Human Evolution, 147, 102854. https://doi.org/10.1016/j.jhevol.2020.102854
von Luschka, H. (1862). Die Anatomie des Menschen in Rücksicht auf die Bedürfnisse der praktischen Heilkund (Vol. 1). Verlag der H. Laupp'schen Buchhandlung Laupp & Siebeck.
Walheim, G., & Selvik, G. (1984). Mobility of the pubic symphysis. In vivo measurements with an electromechanic method and a roentgen stereophotogrammetric method. Clinical Orthopaedics and Related Research (1976-2007), 191, 129-135. https://europepmc.org/article/med/6499304
Walrath, D. E., & Glantz, M. M. (1996). Sexual dimorphism in the pelvic midplane and its relationship to neandertal reproductive patterns. American Journal of Physical Anthropology, 100(1), 89-100. https://doi.org/10.1002/(sici)1096-8644(199605)100:1<89::aid-ajpa9>3.0.co;2-8
Weaver, T. D., & Hublin, J.-J. (2009). Neandertal birth canal shape and the evolution of human childbirth. Proceedings of the National Academy of Sciences, 106(20), 8151-8156. https://doi.org/10.1073/pnas.0812554106
Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1), 1-29. https://doi.org/10.18637/jss.v040.i01
Weber, K., Mahlfeld, A., Sekulla, C., & Otto, W. (1997). The benefit of ultrasoundin lesions of the pubic symphysis. European Journal of Ultrasound, 6(2), 111-116. https://doi.org/10.1016/S0929-8266(97)10005-2
Wurdinger, S., Humbsch, K., Reichenbach, J. R., Peiker, G., Seewald, H.-J., & Kaiser, W. A. (2002). MRI of the pelvic ring joints postpartum: Normal and pathologicalfindings. Journal of Magnetic Resonance Imaging, 15(3), 324-329. https://doi.org/10.1002/jmri.10073
Weaver, T. D. (2002). A multi-causal functional analysis of hominid hip morphology (Publication No. 3067975) [Doctoral dissertation, Stanford University]. ProQuest Dissertations and Theses Global.
White, T., & Folkens, P. (2005). Pelvic girdle: Sacrum, coccyx, & os coxae. In T. White & P. Folkens (Eds.), The human bone manual (pp. 241-253). AcademicPress, San Diego. https://doi.org/10.1016/B978-0-12-088467-4.50017-X
Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2012). Simple size and shape variables: Shape coordinates. In Geometric morphometrics for biologists: A primer (p. 62). Academic Press.