Neuroprotective Effect of Vitamin D on Behavioral and Oxidative Parameters of Male and Female Adult Wistar Rats Exposed to Mancozeb (manganese/zinc ethylene bis-dithiocarbamate).
Behavioral
Mancozeb
Manganese
Metabolic and oxidative stress
Vitamin D
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
14
09
2022
accepted:
02
03
2023
medline:
29
5
2023
pubmed:
21
3
2023
entrez:
20
3
2023
Statut:
ppublish
Résumé
The constant exposure of rural workers to pesticides is a serious public health problem. Mancozeb (MZ) is a pesticide linked to hormonal, behavioral, genetic, and neurodegenerative effects, mainly related to oxidative stress. Vitamin D is a promising molecule that acts as a protector against brain aging. This study aimed to evaluate the neuroprotective role of vitamin D in adult male and female Wistar rats exposed to MZ. Animals received 40 mg/kg of MZ i.p. and 12.5 μg/kg or 25 μg/kg vitamin D by gavage, twice a week, for 6 weeks. The concentration of manganese had a significant increase in the hippocampus of both sexes and in the striatum of females, unlike zinc, which did not show a significant increase. MZ poisoning led to mitochondrial changes in brain tissues and promoted anxiogenic effects, especially in females. Alterations in antioxidant enzymes, mainly in the catalase activity were observed in intoxicated rats. Taken together, our results showed that exposure to MZ leads to the accumulation of manganese in brain tissues, and the behavior and metabolic/oxidative impairment were different between the sexes. Furthermore, the administration of Vitamin D was effective in preventing the damage caused by the pesticide.
Identifiants
pubmed: 36940076
doi: 10.1007/s12035-023-03298-8
pii: 10.1007/s12035-023-03298-8
doi:
Substances chimiques
mancozeb
R0HY55EB9E
Fungicides, Industrial
0
Manganese
42Z2K6ZL8P
Neuroprotective Agents
0
Vitamin D
1406-16-2
Zinc
J41CSQ7QDS
Antioxidants
0
Ethylenes
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3724-3740Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Costa-Silva DG, Lopes AR, Martins IK, Leandro LP, Nunes MEM, de Carvalho NR, Rodrigues NR, Macedo GE et al (2018) Mancozeb exposure results in manganese accumulation and Nrf2-related antioxidant responses in the brain of common carp Cyprinus carpio. Environ Sci Pollut Res Int 25:15529–15540. https://doi.org/10.1007/s11356-018-1724-9
doi: 10.1007/s11356-018-1724-9
pubmed: 29569203
Morales-Ovalles Y, Miranda-Contreras L, Peña-Contreras Z, Dávila-Vera D, Balza-Quintero A, Sánchez-Gil B, Mendoza-Briceño RV (2018) Developmental exposure to mancozeb induced neurochemical and morphological alterations in adult male mouse hypothalamus. Environ Toxicol Pharmacol 64:139–146. https://doi.org/10.1016/j.etap.2018.10.004
doi: 10.1016/j.etap.2018.10.004
pubmed: 30391875
Runkle J, Flocks J, Economos J, Dunlop AL (2017) A systematic review of Mancozeb as a reproductive and developmental hazard. Environ Int 99:29–42. https://doi.org/10.1016/j.envint.2016.11.006
doi: 10.1016/j.envint.2016.11.006
pubmed: 27887783
Al-Alam J, Bom L, Chbani A, Fajloun Z, Millet M, (2016) Analysis of Dithiocarbamate Fungicides in Vegetable Matrices Using HPLC-UV Followed by Atomic Absorption Spectrometry. J Chromatogr Sci chromsci;bmw198v1. https://doi.org/10.1093/chromsci/bmw198
US Environmental Protection Agency (2005) Reregistration eligibility decision for mancozeb, List B, case No. 0643. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-014504_20-Sep-05.pdf . Accessed 13 Mar 2023
Balaji B, Rajendar B, Ramanathan M (2014) Quercetin protected isolated human erythrocytes against mancozeb-induced oxidative stress. Toxicol Ind Health 30:561–569. https://doi.org/10.1177/0748233712462465
doi: 10.1177/0748233712462465
pubmed: 23024109
Pirozzi AVA, Stellavato A, La Gatta A, Lamberti M, Schiraldi C (2016) Mancozeb, a fungicide routinely used in agriculture, worsens nonalcoholic fatty liver disease in the human HepG2 cell model. Toxicol Lett 249:1–4. https://doi.org/10.1016/j.toxlet.2016.03.004
doi: 10.1016/j.toxlet.2016.03.004
pubmed: 27016407
Srivastava AK, Mishra S, Ali W, Shukla Y (2016) Protective effects of lupeol against mancozeb-induced genotoxicity in cultured human lymphocytes. Phytomedicine 23:714–724. https://doi.org/10.1016/j.phymed.2016.03.010
doi: 10.1016/j.phymed.2016.03.010
pubmed: 27235710
Pignati WA, Lima FAN de S e, Lara SS de, Correa MLM, Barbosa, JR, Leão LH da C, Pignatti MG, (2017) Distribuição espacial do uso de agrotóxicos no Brasil: uma ferramenta para a Vigilância em Saúde. Ciênc. saúde coletiva 22:3281–3293. https://doi.org/10.1590/1413-812320172210.17742017
Rigotto RM, e Vasconcelos DP, Rocha MM (2014) Pesticide use in Brazil and problems for public health. Cad Saúde Pública 30:1360–1362. https://doi.org/10.1590/0102-311XPE020714
doi: 10.1590/0102-311XPE020714
pubmed: 25166932
Iorio R, Castellucci A, Rossi G, Cinque B, Cifone MG, Macchiarelli G, Cecconi S (2015) Mancozeb affects mitochondrial activity, redox status and ATP production in mouse granulosa cells. Toxicol In Vitro 30:438–445. https://doi.org/10.1016/j.tiv.2015.09.018
doi: 10.1016/j.tiv.2015.09.018
pubmed: 26407525
Astiz M, Acaz-Fonseca E, Garcia-Segura LM (2014) Sex differences and effects of estrogenic compounds on the expression of inflammatory molecules by astrocytes exposed to the insecticide dimethoate. Neurotox Res 25:271–285. https://doi.org/10.1007/s12640-013-9417-0
doi: 10.1007/s12640-013-9417-0
pubmed: 23943137
Yardimci M, Sevgiler Y, Rencuzogullari E, Arslan M, Buyukleyla M, Yilmaz M (2014) Sex-, tissue-, and exposure duration-dependent effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part I: oxidative and neurotoxic potentials. Arh Hig Rada Toksikol 65:387–398. https://doi.org/10.2478/10004-1254-65-2014-2554
doi: 10.2478/10004-1254-65-2014-2554
pubmed: 25720026
Groves NJ, McGrath JJ, Burne THJ (2014) Vitamin D as a Neurosteroid Affecting the Developing and Adult Brain. Annu Rev Nutr 34:117–141. https://doi.org/10.1146/annurev-nutr-071813-105557
doi: 10.1146/annurev-nutr-071813-105557
pubmed: 25033060
Lee PW, Selhorst A, Lampe SG, Liu Y, Yang Y, Lovett-Racke AE (2020) Neuron-Specific Vitamin D Signaling Attenuates Microglia Activation and CNS Autoimmunity. Front Neurol 11:19. https://doi.org/10.3389/fneur.2020.00019
doi: 10.3389/fneur.2020.00019
pubmed: 32082243
pmcid: 7005247
Lazzara F, Amato R, Platania CBM, Conti F, Chou T-H, Porciatti V, Drago F, Bucolo C (2021) 1α,25-dihydroxyvitamin D3 protects retinal ganglion cells in glaucomatous mice. J Neuroinflammation 18:206. https://doi.org/10.1186/s12974-021-02263-3
doi: 10.1186/s12974-021-02263-3
pubmed: 34530842
pmcid: 8444391
Lazzara F, Longo AM, Giurdanella G, Lupo G, Platania CBM, Rossi S, Drago F, Anfuso CD et al (2022) Vitamin D3 preserves blood retinal barrier integrity in an in vitro model of diabetic retinopathy. Front Pharmacol 13:971164. https://doi.org/10.3389/fphar.2022.971164
doi: 10.3389/fphar.2022.971164
pubmed: 36091806
pmcid: 9458952
Kumar RR, Singh L, Thakur A, Singh S, Kumar B (2022) Role of Vitamins in Neurodegenerative Diseases: A Review. CNS Neurol Disord Drug Test 21:766–773. https://doi.org/10.2174/1871527320666211119122150
doi: 10.2174/1871527320666211119122150
Moretti R, Morelli ME, Caruso P (2018) Vitamin D in Neurological Diseases: A Rationale for a Pathogenic Impact. Int J Mol Sci 19:E2245. https://doi.org/10.3390/ijms19082245
doi: 10.3390/ijms19082245
Wimalawansa SJ (2019) Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging. Biology 8:30. https://doi.org/10.3390/biology8020030
doi: 10.3390/biology8020030
pubmed: 31083546
pmcid: 6627346
Hafez AA, Naserzadeh P, Ashtari K, Mortazavian AM, Salimi A (2018) Protection of manganese oxide nanoparticles-induced liver and kidney damage by vitamin D. Regul Toxicol Pharmacol 98:240–244. https://doi.org/10.1016/j.yrtph.2018.08.005
doi: 10.1016/j.yrtph.2018.08.005
pubmed: 30102957
Mokhtari Z, Hekmatdoost A, Nourian M (2016) Antioxidant efficacy of vitamin D. J Parathyr Dis 5:11–16
Özerkan D, Özsoy N, Akbulut KG, Güney Ş, Öztürk G (2017) The protective effect of vitamin D against carbon tetrachloride damage to the rat liver. Biotech Histochem 92:513–523. https://doi.org/10.1080/10520295.2017.1361549
doi: 10.1080/10520295.2017.1361549
pubmed: 28910170
Goldoni A, Klauck C, Da Silva S, Da Silva M, Ardenghi P, Da Silva LB (2014) DNA damage in Wistar rats exposed to dithiocar-bamate pesticide mancozeb. Folia Biol 60:202–204
Salum E, Kals J, Kampus P, Salum T, Zilmer K, Aunapuu M, Arend A, Eha J et al (2013) Vitamin D reduces deposition of advanced glycation end-products in the aortic wall and systemic oxidative stress in diabetic rats. Diabetes Res Clin Pract 100:243–249. https://doi.org/10.1016/j.diabres.2013.03.008
doi: 10.1016/j.diabres.2013.03.008
pubmed: 23522919
Kechrid Z, Hamdi M, Naziroğlu M, Flores-Arce M (2012) Vitamin D supplementation modulates blood and tissue zinc, liver glutathione and blood biochemical parameters in diabetic rats on a zinc-deficient diet. Biol Trace Elem Res 148:371–377. https://doi.org/10.1007/s12011-012-9383-z
doi: 10.1007/s12011-012-9383-z
pubmed: 22410949
Pilz S, März W, Cashman KD, Kiely ME, Whiting SJ, Holick MF, Grant WB, Pludowski P et al (2018) Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front Endocrinol 9:373. https://doi.org/10.3389/fendo.2018.00373
doi: 10.3389/fendo.2018.00373
Lima LAR, Lopes MJP, Costa RO, Lima FAV, Neves KRT, Calou IBF, Andrade GM, Viana GSB (2018) Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflammation 15:249. https://doi.org/10.1186/s12974-018-1266-6
doi: 10.1186/s12974-018-1266-6
pubmed: 30170624
pmcid: 6119240
Jiang C, Wan X, Jankovic J, Christian ST, Pristupa ZB, Niznik HB, Sundsmo JS, Le W (2004) Dopaminergic Properties and Experimental Anti-Parkinsonian Effects of IPX750 in Rodent Models of Parkinson Disease. Clin Neuropharmacol 27:63–73. https://doi.org/10.1097/00002826-200403000-00004
doi: 10.1097/00002826-200403000-00004
pubmed: 15252266
Pellow S, Chopin P, File SE, Briley M (1985) Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167. https://doi.org/10.1016/0165-0270(85)90031-7
doi: 10.1016/0165-0270(85)90031-7
pubmed: 2864480
Fitsanakis VA, Zhang N, Anderson JG, Erikson KM, Avison MJ, Gore JC, Aschner M (2008) Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicol Sci 103:116–124. https://doi.org/10.1093/toxsci/kfn019
doi: 10.1093/toxsci/kfn019
pubmed: 18234737
Latini A, da Silva CG, Ferreira GC, Schuck PF, Scussiato K, Sarkis JJ, Dutra Filho CS, Wyse ATS et al (2005) Mitochondrial energy metabolism is markedly impaired by d-2-hydroxyglutaric acid in rat tissues. Mol Genet Metab 86:188–199. https://doi.org/10.1016/j.ymgme.2005.05.002
doi: 10.1016/j.ymgme.2005.05.002
pubmed: 15963747
Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316. https://doi.org/10.1006/abbi.1996.0178
doi: 10.1006/abbi.1996.0178
pubmed: 8645009
Fischer JC, Ruitenbeek W, Berden JA, Trijbels JMF, Veerkamp JH, Stadhouders AM, Sengers RCA, Janssen AJM (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36. https://doi.org/10.1016/0009-8981(85)90135-4
doi: 10.1016/0009-8981(85)90135-4
pubmed: 3000647
Ali SF, LeBel CP, Bondy SC (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13:637–648
pubmed: 1475065
Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490. https://doi.org/10.1016/s0076-6879(85)13062-4
doi: 10.1016/s0076-6879(85)13062-4
pubmed: 3003504
Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333. https://doi.org/10.1016/s0076-6879(81)77046-0
doi: 10.1016/s0076-6879(81)77046-0
pubmed: 7329310
Aebi H, Wyss SR, Scherz B, Skvaril F (1974) Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem 48:137–145. https://doi.org/10.1111/j.1432-1033.1974.tb03751.x
doi: 10.1111/j.1432-1033.1974.tb03751.x
pubmed: 4141308
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
doi: 10.1016/S0021-9258(19)52451-6
pubmed: 14907713
Costa C, Teodoro M, Rugolo CA, Alibrando C, Giambò F, Briguglio G, Fenga C (2020) MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol Rep 7:759–767. https://doi.org/10.1016/j.toxrep.2020.05.003
doi: 10.1016/j.toxrep.2020.05.003
pubmed: 32612936
pmcid: 7322123
Dallagnol JC, Ferri Pezzini M, Suarez Uribe N, Joveleviths D (2021) Systemic effects of the pesticide mancozeb – A literature review. Eur Rev Med Pharmacol Sci 25:4113–4120. https://doi.org/10.26355/eurrev_202106_26054
doi: 10.26355/eurrev_202106_26054
pubmed: 34156691
Bao J, Zhang Y, Wen R, Zhang L, Wang X (2022) Low level of mancozeb exposure affects ovary in mice. Ecotoxicol Environ Safety 239:113670. https://doi.org/10.1016/j.ecoenv.2022.113670
doi: 10.1016/j.ecoenv.2022.113670
pubmed: 35617905
European Food Safety Authority (EFSA), Abdourahime H, Anastassiadou M, Arena M, Auteri D, Barmaz S, Brancato A, Bura L, et al, (2020) Peer review of the pesticide risk assessment of the active substance mancozeb. EFS2 18. https://doi.org/10.2903/j.efsa.2020.5755
European Union (2020) Commission Implementing Regulation (EU) 2020/2087. OJ L 423:50-52. https://eur-lex.europa.eu/eli/reg_impl/2020/2087/oj . Accessed 13 Mar 2023
Panis C, Candiotto LZP, Gaboardi SC, Gurzenda S, Cruz J, Castro M, Lemos B (2022) Widespread pesticide contamination of drinking water and impact on cancer risk in Brazil. Environ Int 165:107321. https://doi.org/10.1016/j.envint.2022.107321
doi: 10.1016/j.envint.2022.107321
pubmed: 35691095
Huang P, Chen C, Wang H, Li G, Jing H, Han Y, Liu N, Xiao Y et al (2011) Manganese effects in the liver following subacute or subchronic manganese chloride exposure in rats. Ecotoxicol Environ Saf 74:615–622. https://doi.org/10.1016/j.ecoenv.2010.08.011
doi: 10.1016/j.ecoenv.2010.08.011
pubmed: 20813406
Richter Schmitz CR, Eichwald T, Branco Flores MV, Varela KG, Mantovani A, Steffani JA, Glaser V, de Carvalho D et al (2019) Sex differences in subacute manganese intoxication: Oxidative parameters and metal deposition in peripheral organs of adult Wistar rats. Regul Toxicol Pharmacol 104:98–107. https://doi.org/10.1016/j.yrtph.2019.03.005
doi: 10.1016/j.yrtph.2019.03.005
pubmed: 30878574
Nihi MM, Manfro RC, Martins C, Suliman M, Murayama Y, Riella MC, Lindholm B, do Nascimento MM (2010) Associação entre gordura corporal, inflamação e estresse oxidativo na hemodiálise. J Bras Nefrol 32:11–17. https://doi.org/10.1590/S0101-28002010000100003
doi: 10.1590/S0101-28002010000100003
Ksheerasagar RL, Kaliwal BB (2003) Temporal effects of mancozeb on testes, accessory reproductive organs and biochemical constituents in albino mice. Environ Toxicol Pharmacol 15:9–17. https://doi.org/10.1016/j.etap.2003.08.006
doi: 10.1016/j.etap.2003.08.006
pubmed: 21782674
Austin C, Richardson C, Smith D, Arora M (2017) Tooth manganese as a biomarker of exposure and body burden in rats. Environ Res 155:373–379. https://doi.org/10.1016/j.envres.2017.03.004
doi: 10.1016/j.envres.2017.03.004
pubmed: 28279842
pmcid: 5862712
Liang G, Zhang L, Ma S, Lv Y, Qin H, Huang X, Qing L, Li Q et al (2016) Manganese accumulation in hair and teeth as a biomarker of manganese exposure and neurotoxicity in rats. Environ Sci Pollut Res Int 23:12265–12271. https://doi.org/10.1007/s11356-016-6420-z
doi: 10.1007/s11356-016-6420-z
pubmed: 26976011
Baker MG, Stover B, Simpson CD, Sheppard L, Seixas NS (2016) Using exposure windows to explore an elusive biomarker: blood manganese. Int Arch Occup Environ Health 89:679–687. https://doi.org/10.1007/s00420-015-1105-3
doi: 10.1007/s00420-015-1105-3
pubmed: 26589320
Peres T, Eyng H, Lopes S, Colle D, Gonçalves G, Venske D, Lopes M, Ben J, et al, (2015) Developmental exposure to manganese induces lasting motor and cognitive impairment in rats. Neurotoxicol 50. https://doi.org/10.1016/j.neuro.2015.07.005
Cordova FM, Aguiar AS, Peres TV, Lopes MW, Gonçalves FM, Pedro DZ, Lopes SC, Pilati C et al (2013) Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol 87:1231–1244. https://doi.org/10.1007/s00204-013-1017-5
doi: 10.1007/s00204-013-1017-5
pubmed: 23385959
pmcid: 6543098
Rimmelzwaan LM, van Schoor NV, Lips P, Berendse H, Eekhoff EM (2016) Systematic Review of the Relationship between Vitamin D and Parkinson’s Disease. J Parkinson’s Dis. https://doi.org/10.3233/JPD-150615
doi: 10.3233/JPD-150615
Pertile RAN, Cui X, Eyles DW (2016) Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience 333:193–203. https://doi.org/10.1016/j.neuroscience.2016.07.020
doi: 10.1016/j.neuroscience.2016.07.020
pubmed: 27450565
Malecki EA (2001) Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull 55:225–228. https://doi.org/10.1016/S0361-9230(01)00456-7
doi: 10.1016/S0361-9230(01)00456-7
pubmed: 11470319
Ommati MM, Heidari R, Ghanbarinejad V, Aminian A, Abdoli N, Niknahad H (2020) The neuroprotective properties of carnosine in a mouse model of manganism is mediated via mitochondria regulating and antioxidative mechanisms. Nutr Neurosci 23:731–743. https://doi.org/10.1080/1028415X.2018.1552399
doi: 10.1080/1028415X.2018.1552399
pubmed: 30856059
Rao KVR, Norenberg MD (2004) Manganese Induces the Mitochondrial Permeability Transition in Cultured Astrocytes. J Biol Chem 279:32333–32338. https://doi.org/10.1074/jbc.M402096200
doi: 10.1074/jbc.M402096200
pubmed: 15173181
Verity MA (1999) Manganese neurotoxicity: a mechanistic hypothesis. Neurotoxicology 20:489–497
pubmed: 10385907
Zhang S, Zhou Z, Fu J (2003) Effect of manganese chloride exposure on liver and brain mitochondria function in rats. Environ Res 93:149–157. https://doi.org/10.1016/S0013-9351(03)00109-9
doi: 10.1016/S0013-9351(03)00109-9
pubmed: 12963399
da Silva EB, Eichwald T, Glaser V, Varela KG, Baptistella AR, de Carvalho D, Remor AP (2022) Protective Effects of Probucol on Different Brain Cells Exposed to Manganese. Neurotox Res 40:276–285. https://doi.org/10.1007/s12640-021-00458-3
doi: 10.1007/s12640-021-00458-3
pubmed: 35043377
Robison G, Zakharova T, Fu S, Jiang W, Fulper R, Barrea R, Marcus MA, Zheng W et al (2012) X-ray fluorescence imaging: a new tool for studying manganese neurotoxicity. PLoS One 7:e48899. https://doi.org/10.1371/journal.pone.0048899
doi: 10.1371/journal.pone.0048899
pubmed: 23185282
pmcid: 3501493
Ivleva I, Pestereva N, Zubov A, Karpenko M (2020) Intranasal exposure of manganese induces neuroinflammation and disrupts dopamine metabolism in the striatum and hippocampus. Neurosci Lett 738:135344. https://doi.org/10.1016/j.neulet.2020.135344
doi: 10.1016/j.neulet.2020.135344
pubmed: 32889006
Domico LM, Cooper KR, Bernard LP, Zeevalk GD (2007) Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells. Neurotoxicology 28:1079–1091. https://doi.org/10.1016/j.neuro.2007.04.008
doi: 10.1016/j.neuro.2007.04.008
pubmed: 17597214
pmcid: 2141682
Garg G, Singh S, Singh AK, Rizvi SI (2018) N-acetyl-l-cysteine attenuates oxidative damage and neurodegeneration in rat brain during aging. Can J Physiol Pharmacol 96:1189–1196. https://doi.org/10.1139/cjpp-2018-0209
doi: 10.1139/cjpp-2018-0209
pubmed: 30107137
Patel S, Singh V, Kumar A, Gupta YK, Singh MP (2006) Status of antioxidant defense system and expression of toxicant responsive genes in striatum of maneb- and paraquat-induced Parkinson’s disease phenotype in mouse: Mechanism of neurodegeneration. Brain Res 1081:9–18. https://doi.org/10.1016/j.brainres.2006.01.060
doi: 10.1016/j.brainres.2006.01.060
pubmed: 16510128
Behl C, Moosmann B, (2002) Oxidative Nerve Cell Death in Alzheimers Disease and Stroke: Antioxidants as Neuroprotective Compounds. Biol Chem 383. https://doi.org/10.1515/BC.2002.053
Diazveliz G (2004) Behavioral effects of manganese injected in the rat substantia nigra are potentiated by dicumarol, a DT-diaphorase inhibitor. Pharmacol Biochem Behav 77:245–251. https://doi.org/10.1016/j.pbb.2003.10.016
doi: 10.1016/j.pbb.2003.10.016
pubmed: 14751451
Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B (2014) Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(ii)/(iii) in rat brain tissue. Metallomics 6:921. https://doi.org/10.1039/c4mt00022f
doi: 10.1039/c4mt00022f
pubmed: 24599255
Bayo-Olugbami A, Nafiu AB, Amin A, Ogundele OM, Lee CC, Owoyele BV, (2020) Vitamin D attenuated 6-OHDA-induced behavioural deficits, dopamine dysmetabolism, oxidative stress, and neuro-inflammation in mice. Nutr Neurosci 1–12. https://doi.org/10.1080/1028415X.2020.1815331
da Silva TC, Hiller C, Gai Z, Kullak-Ublick GA (2016) Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J Steroid Biochem Mol Biol 163:77–87. https://doi.org/10.1016/j.jsbmb.2016.04.006
doi: 10.1016/j.jsbmb.2016.04.006
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A et al (2020) The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 41:bnz005. https://doi.org/10.1210/endrev/bnz005
doi: 10.1210/endrev/bnz005
pubmed: 31544208
Misiak M, Beyer C, Arnold S (2010) Gender-specific role of mitochondria in the vulnerability of 6-hydroxydopamine-treated mesencephalic neurons. Biochim Biophys Acta 1797:1178–1188. https://doi.org/10.1016/j.bbabio.2010.04.009
doi: 10.1016/j.bbabio.2010.04.009
pubmed: 20416276
Giordano G, Tait L, Furlong CE, Cole TB, Kavanagh TJ, Costa LG (2013) Gender differences in brain susceptibility to oxidative stress are mediated by levels of paraoxonase-2 expression. Free Radic Biol Med 58:98–108. https://doi.org/10.1016/j.freeradbiomed.2013.01.019
doi: 10.1016/j.freeradbiomed.2013.01.019
pubmed: 23376469
pmcid: 3622778
Ishii M, Yamauchi T, Matsumoto K, Watanabe G, Taya K, Chatani F (2012) Maternal age and reproductive function in female Sprague-Dawley rats. J Toxicol Sci 37:631–638. https://doi.org/10.2131/jts.37.631
doi: 10.2131/jts.37.631
pubmed: 22688002
Bianchi S, Nottola SA, Torge D, Palmerini MG, Necozione S, Macchiarelli G (2020) Association between Female Reproductive Health and Mancozeb: Systematic Review of Experimental Models. Int J Environ Res Public Health 17:E2580. https://doi.org/10.3390/ijerph17072580
doi: 10.3390/ijerph17072580
Baligar PN, Kaliwal BB (2001) Induction of gonadal toxicity to female rats after chronic exposure to mancozeb. Ind Health 39:235–243. https://doi.org/10.2486/indhealth.39.235
doi: 10.2486/indhealth.39.235
pubmed: 11499999