Large-Scale Colloidal Synthesis of Chalcogenides for Thermoelectric Applications.

Seebeck coefficient lead selenide lead telluride microstructure spark plasma sintering tin selenide transport properties

Journal

ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991

Informations de publication

Date de publication:
29 Mar 2023
Historique:
medline: 21 3 2023
pubmed: 21 3 2023
entrez: 20 3 2023
Statut: ppublish

Résumé

A simple and effective preparation of solution-processed chalcogenide thermoelectric materials is described. First, PbTe, PbSe, and SnSe were prepared by gram-scale colloidal synthesis relying on the reaction between metal acetates and diphenyl dichalcogenides in hexadecylamine solvent. The resultant phase-pure chalcogenides consist of highly crystalline and defect-free particles with distinct cubic-, tetrapod-, and rod-like morphologies. The powdered PbTe, PbSe, and SnSe products were subjected to densification by spark plasma sintering (SPS), affording dense pellets of the respective chalcogenides. Scanning electron microscopy shows that the SPS-derived pellets exhibit fine nano-/micro-structures dictated by the original morphology of the key constituting particles, while the powder X-ray diffraction and electron microscopy analyses confirm that the SPS-derived pellets are phase-pure materials, preserving the structure of the colloidal synthesis products. The resultant solution-processed PbTe, PbSe, and SnSe exhibit low thermal conductivity, which might be due to the enhanced phonon scattering developed over fine microstructures. For undoped

Identifiants

pubmed: 36940316
doi: 10.1021/acsami.2c23247
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15498-15508

Auteurs

Viviana Sousa (V)

Center of Physics of the Universities of Minho and Porto, University of Minho, Braga 4710-057, Portugal.
Nanochemistry Research Group, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal.

Arka Sarkar (A)

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States.

Oleg I Lebedev (OI)

Laboratoire CRISMAT, UMR 6508, CNRS-ENSICAEN, Caen 14050, France.

Christophe Candolfi (C)

Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 2 Allée André Guinier-Campus ARTEM, BP 50840, CEDEX, Nancy 54011, France.

Bertrand Lenoir (B)

Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 2 Allée André Guinier-Campus ARTEM, BP 50840, CEDEX, Nancy 54011, France.

Rodrigo Coelho (R)

Centro de Ciências e Tecnologias Nucleares (C2TN), Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Bobadela LRS 2695-066, Portugal.

António P Gonçalves (AP)

Centro de Ciências e Tecnologias Nucleares (C2TN), Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Bobadela LRS 2695-066, Portugal.

Eliana M F Vieira (EMF)

CMEMS─UMinho, University of Minho, Guimarães 4800-058, Portugal.
LABBELS─Associate Laboratory, Braga/Guimarães, Portugal.

Pedro Alpuim (P)

Center of Physics of the Universities of Minho and Porto, University of Minho, Braga 4710-057, Portugal.
Nanochemistry Research Group, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal.

Kirill Kovnir (K)

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States.

Yury V Kolen'ko (YV)

Nanochemistry Research Group, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal.

Classifications MeSH