Intercalant-induced V

intercalant orbital occupation rate capability vanadium oxide zinc-ion batteries

Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
28 Mar 2023
Historique:
entrez: 20 3 2023
pubmed: 21 3 2023
medline: 21 3 2023
Statut: ppublish

Résumé

Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH

Identifiants

pubmed: 36940337
doi: 10.1073/pnas.2217208120
pmc: PMC10068788
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2217208120

Subventions

Organisme : The National Key R&D Program of China
ID : 2020YFA0405800
Organisme : National Natural Science Foundation of China (NSFC)
ID : U1932201
Organisme : National Natural Science Foundation of China (NSFC)
ID : U2032113
Organisme : CAS | Youth Innovation Promotion Association (YIPA)
ID : 2022457
Organisme : USTC Research Funds of the Double First-Class Initiative
ID : YD2310002003

Références

Adv Mater. 2018 Feb;30(5):
pubmed: 29226488
J Am Chem Soc. 2014 Oct 1;136(39):13684-97
pubmed: 25187385
ACS Appl Mater Interfaces. 2020 Mar 11;12(10):11753-11760
pubmed: 32068382
Adv Mater. 2018 Jan;30(1):
pubmed: 29131432
Adv Mater. 2020 Jul;32(26):e2001113
pubmed: 32431024
Nat Mater. 2017 Apr;16(4):454-460
pubmed: 27918566
JACS Au. 2022 Mar 14;2(3):762-776
pubmed: 35388376
Adv Mater. 2015 Sep 2;27(33):4837-44
pubmed: 26177725
Phys Chem Chem Phys. 2014 Mar 14;16(10):4699-708
pubmed: 24468855
ACS Nano. 2020 Sep 22;14(9):11809-11820
pubmed: 32865959
Science. 2011 Nov 18;334(6058):928-35
pubmed: 22096188
Nat Commun. 2021 Nov 25;12(1):6878
pubmed: 34824249
Angew Chem Int Ed Engl. 2022 Aug 22;61(34):e202207600
pubmed: 35764600
ACS Nano. 2021 Jun 22;15(6):9244-9272
pubmed: 34081440
Angew Chem Int Ed Engl. 2019 Nov 11;58(46):16358-16367
pubmed: 31050086
Nat Commun. 2016 Jun 28;7:12022
pubmed: 27349567
Nature. 2008 Feb 7;451(7179):652-7
pubmed: 18256660
Science. 2016 Feb 5;351(6273):1253292
pubmed: 26912708
Nanoscale. 2021 Oct 21;13(40):17040-17048
pubmed: 34622911

Auteurs

Yixiu Wang (Y)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Shiqiang Wei (S)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Zheng-Hang Qi (ZH)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Shuangming Chen (S)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Kefu Zhu (K)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Honghe Ding (H)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Yuyang Cao (Y)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Quan Zhou (Q)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Changda Wang (C)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Pengjun Zhang (P)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Xin Guo (X)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Xiya Yang (X)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Xiaojun Wu (X)

School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei, Anhui 230026, the People's Republic of China.

Li Song (L)

National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China.

Classifications MeSH