Inbreeding depression explains killer whale population dynamics.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
12
05
2022
accepted:
26
01
2023
medline:
12
5
2023
pubmed:
22
3
2023
entrez:
21
3
2023
Statut:
ppublish
Résumé
Understanding the factors that cause endangered populations to either grow or decline is crucial for preserving biodiversity. Conservation efforts often address extrinsic threats, such as environmental degradation and overexploitation, that can limit the recovery of endangered populations. Genetic factors such as inbreeding depression can also affect population dynamics but these effects are rarely measured in the wild and thus often neglected in conservation efforts. Here we show that inbreeding depression strongly influences the population dynamics of an endangered killer whale population, despite genomic signatures of purging of deleterious alleles via natural selection. We find that the 'Southern Residents', which are currently endangered despite nearly 50 years of conservation efforts, exhibit strong inbreeding depression for survival. Our population models suggest that this inbreeding depression limits population growth and predict further decline if the population remains genetically isolated and typical environmental conditions continue. The Southern Residents also had more inferred homozygous deleterious alleles than three other, growing, populations, further suggesting that inbreeding depression affects population fitness. These results demonstrate that inbreeding depression can substantially limit the recovery of endangered populations. Conservation actions focused only on extrinsic threats may therefore fail to account for key intrinsic genetic factors that also limit population growth.
Identifiants
pubmed: 36941343
doi: 10.1038/s41559-023-01995-0
pii: 10.1038/s41559-023-01995-0
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
675-686Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
pubmed: 25931559
doi: 10.1126/science.aaa4984
Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).
doi: 10.2307/5542
Hedrick, P. W., Lacy, R. C., Allendorf, F. W. & Soulé, M. E. Directions in conservation biology: comments on Caughley. Conserv. Biol. 10, 1312–1320 (1996).
doi: 10.1046/j.1523-1739.1996.10051312.x
Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl Acad. Sci. USA 118, e2104642118 (2021).
pubmed: 34772759
pmcid: 8640931
doi: 10.1073/pnas.2104642118
O’Grady, J. J. et al. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 133, 42–51 (2006).
doi: 10.1016/j.biocon.2006.05.016
Shaffer, M. L. Minimum population sizes for species conservation. BioScience 31, 131–134 (1981).
doi: 10.2307/1308256
Soulé, M. E. Viable Populations for Conservation (Cambridge Univ. Press, 1987).
Kardos, M., Taylor, H. R., Ellegren, H., Luikart, G. & Allendorf, F. W. Genomics advances the study of inbreeding depression in the wild. Evol. Appl. 9, 1205–1218 (2016).
pubmed: 27877200
pmcid: 5108213
doi: 10.1111/eva.12414
Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).
pubmed: 19834483
doi: 10.1038/nrg2664
Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).
doi: 10.1016/S0169-5347(02)02489-8
Ralls, K., Brugger, K. & Ballou, J. Inbreeding and juvenile mortality in small populations of ungulates. Science 206, 1101–1103 (1979).
pubmed: 493997
doi: 10.1126/science.493997
Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).
pubmed: 25435267
doi: 10.1016/j.tree.2014.10.009
Robinson, Z. L. et al. Experimental test of genetic rescue in isolated populations of brook trout. Mol. Ecol. 26, 4418–4433 (2017).
pubmed: 28664980
doi: 10.1111/mec.14225
Bozzuto, C., Biebach, I., Muff, S., Ives, A. R. & Keller, L. F. Inbreeding reduces long-term growth of Alpine ibex populations. Nat. Ecol. Evol. 3, 1359–1364 (2019).
pubmed: 31477848
doi: 10.1038/s41559-019-0968-1
Saccheri, I. et al. Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494 (1998).
doi: 10.1038/33136
Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl Acad. Sci. USA 118, e2015096118 (2021).
pubmed: 33608481
pmcid: 7958437
doi: 10.1073/pnas.2015096118
Ford, J. K. et al. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471 (1998).
doi: 10.1139/z98-089
Dahlheim, M. et al. Eastern temperate North Pacific offshore killer whales (Orcinus orca): occurrence, movements, and insights into feeding ecology. Mar. Mammal. Sci. 24, 719–729 (2008).
doi: 10.1111/j.1748-7692.2008.00206.x
Ford, J. K. et al. Shark predation and tooth wear in a population of northeastern Pacific killer whales. Aquat. Biol. 11, 213–224 (2011).
doi: 10.3354/ab00307
Parsons, K. M. et al. Geographic patterns of genetic differentiation among killer whales in the northern North Pacific. J. Hered. 104, 737–754 (2013).
pubmed: 23846984
doi: 10.1093/jhered/est037
Olesiuk, P., Bigg, M. & Ellis, G. Life history and population dynamics of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Comm. 12, 209–243 (1990).
COSEWIC Assessment and Update Status Report on the Killer Whale Orcinus orca, Southern Resident Population, Northern Resident Population, West Coast Transient Population, Offshore Population and Northwest Atlantic/Eastern Arctic Population, in Canada (Committee on the Status of Endangered Wildlife in Canada, 2008).
Ward, E. J. et al. Estimating the Impacts of Chinook Salmon Abundance and Prey Removal by Ocean Fishing on Southern Resident Killer Whale Population Dynamics (NOAA, 2013).
Recovery Plan for Southern Resident Killer Whales (Orcinus orca) (National Marine Fisheries Service, 2008).
Kirin, M. et al. Genomic runs of homozygosity record population history and consanguinity. PLoS ONE 5, e13996 (2010).
pubmed: 21085596
pmcid: 2981575
doi: 10.1371/journal.pone.0013996
Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).
pubmed: 29335644
doi: 10.1038/nrg.2017.109
Kardos, M., Qvarnström, A. & Ellegren, H. Inferring individual inbreeding and demographic history from segments of identity by descent in Ficedula flycatcher genome sequences. Genetics 205, 1319–1334 (2017).
pubmed: 28100590
pmcid: 5340341
doi: 10.1534/genetics.116.198861
Thompson, E. A. Identity by descent: variation in meiosis, across genomes, and in populations. Genetics 194, 301–326 (2013).
pubmed: 23733848
pmcid: 3664843
doi: 10.1534/genetics.112.148825
Stoffel, M. A., Johnston, S. E., Pilkington, J. G. & Pemberton, J. M. Mutation load decreases with haplotype age in wild Soay sheep. Evol. Lett. 5, 187–195 (2021).
pubmed: 34136268
pmcid: 8190445
doi: 10.1002/evl3.229
Szpiech, Z. A. et al. Long runs of homozygosity are enriched for deleterious variation. Am. J. Hum. Genet. 93, 90–102 (2013).
pubmed: 23746547
pmcid: 3710769
doi: 10.1016/j.ajhg.2013.05.003
Foote, A. D. et al. Runs of homozygosity in killer whale genomes provide a global record of demographic histories. Mol. Ecol. 30, 6162–6177 (2021).
pubmed: 34416064
doi: 10.1111/mec.16137
Barrett-Lennard, L. G. & Ellis, G. Population Structure and Genetic Variability in Northeastern Pacific Killer Whales: Towards an Assessment of Population Viability (Department of Fisheries and Oceans Canada, 2001).
Ford, M. J. et al. Inbreeding in an endangered killer whale population. Anim. Conserv. 21, 423–432 (2018).
doi: 10.1111/acv.12413
Ford, M. J. et al. Inferred paternity and male reproductive success in a killer whale (Orcinus orca) population. J. Hered. 102, 537–553 (2011).
pubmed: 21757487
doi: 10.1093/jhered/esr067
Santiago, E. et al. Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol. Biol. Evol. 37, 3642–3653 (2020).
pubmed: 32642779
doi: 10.1093/molbev/msaa169
Do, C. et al. NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (N
pubmed: 23992227
doi: 10.1111/1755-0998.12157
Waples, R. S. Genetic methods for estimating the effective size of cetacean populations. Rep. Int. Whal. Comm. 13, 279–300 (1991).
Robinson, J. A. et al. Genomic flatlining in the endangered island fox. Curr. Biol. 26, 1183–1189 (2016).
pubmed: 27112291
doi: 10.1016/j.cub.2016.02.062
Hedrick, P., Robinson, J., Peterson, R. O. & Vucetich, J. A. Genetics and extinction and the example of Isle Royale wolves. Anim. Conserv. 22, 302–309 (2019).
doi: 10.1111/acv.12479
Dussex, N. et al. Population genomics of the critically endangered kākāpō. Cell Genom. 1, 100002 (2021).
Kardos, M. et al. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat. Ecol. Evol. 2, 124–131 (2018).
pubmed: 29158554
doi: 10.1038/s41559-017-0375-4
Robinson, J. A. et al. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci. Adv. 5, eaau0757 (2019).
pubmed: 31149628
pmcid: 6541468
doi: 10.1126/sciadv.aau0757
Hoelzel, A. R. et al. Evolution of population structure in a highly social top predator, the killer whale. Mol. Biol. Evol. 24, 1407–1415 (2007).
pubmed: 17400573
doi: 10.1093/molbev/msm063
Morton, N. E., Crow, J. F. & Muller, H. J. An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl Acad. Sci. USA 42, 855–863 (1956).
pubmed: 16589958
pmcid: 528351
doi: 10.1073/pnas.42.11.855
Stoffel, M. A., Johnston, S. E., Pilkington, J. G. & Pemberton, J. M. Genetic architecture and lifetime dynamics of inbreeding depression in a wild mammal. Nat. Commun. 12, 2972 (2021).
Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).
doi: 10.1146/annurev.es.18.110187.001321
Ralls, K., Ballou, J. D., Rideout, B. A. & Frankham, R. Genetic management of chondrodystrophy in California condors. Anim. Conserv. 3, 145–153 (2000).
doi: 10.1111/j.1469-1795.2000.tb00239.x
McCune, A. R. et al. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish. Science 296, 2398–2401 (2002).
pubmed: 12089444
doi: 10.1126/science.1071757
Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern Resident killer whales (Orcinus orca). PLoS ONE 12, e0179824 (2017).
pubmed: 28662095
pmcid: 5491047
doi: 10.1371/journal.pone.0179824
Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).
pubmed: 27743611
doi: 10.1016/j.tree.2016.09.005
Muto, M. et al. Alaska Marine Mammal Stock Assessments, 2016 (NOAA, 2017).
Holt, M. M. et al. Vessels and their sounds reduce prey capture effort by endangered killer whales (Orcinus orca). Mar. Environ. Res. 170, 105429 (2021).
pubmed: 34333339
doi: 10.1016/j.marenvres.2021.105429
Ford, J. K., Ellis, G. M., Olesiuk, P. F. & Balcomb, K. C. Linking killer whale survival and prey abundance: food limitation in the oceans’ apex predator? Biol. Lett. 6, 139–142 (2010).
pubmed: 19755531
doi: 10.1098/rsbl.2009.0468
Krahn, M. M. et al. Persistent organic pollutants and stable isotopes in biopsy samples (2004/2006) from Southern Resident killer whales. Mar. Pollut. Bull. 54, 1903–1911 (2007).
pubmed: 17931664
doi: 10.1016/j.marpolbul.2007.08.015
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
Do, R. et al. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat. Genet. 47, 126–131 (2015).
pubmed: 25581429
pmcid: 4310772
doi: 10.1038/ng.3186
Khan, A. et al. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl Acad. Sci. USA 118, e2023018118 (2021).
pubmed: 34848534
pmcid: 8670471
doi: 10.1073/pnas.2023018118
Matkin, C. O., Ward Testa, J., Ellis, G. M. & Saulitis, E. L. Life history and population dynamics of southern Alaska resident killer whales (Orcinus orca). Mar. Mammal. Sci. 30, 460–479 (2014).
doi: 10.1111/mms.12049
Southern Resident Killer Whales (Orcinus orca) 5-Year Review: Summary and Evaluation (National Marine Fisheries Service, 2016).
Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).
pubmed: 25859046
pmcid: 4668944
doi: 10.1126/science.aaa3952
Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E. & Wayne, R. K. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28, 3487–3494 (2018).
pubmed: 30415705
pmcid: 6462144
doi: 10.1016/j.cub.2018.08.066
Grossen, C., Guillaume, F., Keller, L. F. & Croll, D. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11, 1001 (2020).
Robinson, J. A. et al. The critically endangered vaquita is not doomed to extinction by inbreeding depression. Science 376, 635–639 (2022).
pubmed: 35511971
pmcid: 9881057
doi: 10.1126/science.abm1742
Robinson, J., Kyriazis, C. C., Yuan, S. C. & Lohmueller, K. E. Deleterious variation in natural populations and implications for conservation genetics. Ann. Rev. Anim. Biosci. (in the press).
García-Dorado, A. Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation, and standard selection. Genetics 190, 1461–1476 (2012).
pubmed: 22298709
pmcid: 3316656
doi: 10.1534/genetics.111.135541
Kijas, J. W. et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 10, e1001258 (2012).
pubmed: 22346734
pmcid: 3274507
doi: 10.1371/journal.pbio.1001258
Clutton-Brock, T. H. & Pemberton, J. M. Soay Sheep: Dynamics and Selection in an Island Population (Cambridge Univ. Press, 2004).
Garcia-Dorado, A. & Hedrick, P. Some hope and many concerns on the future of the vaquita. Heredity https://doi.org/10.1038/s41437-022-00573-7 (2022).
Huisman, J., Kruuk, L. E. B., Ellis, P. A. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl Acad. Sci. USA 113, 3585–3590 (2016).
pubmed: 26979959
pmcid: 4822623
doi: 10.1073/pnas.1518046113
Nelms, S. E. et al. Marine mammal conservation: over the horizon. Endanger. Species Res. 44, 291–325 (2021).
doi: 10.3354/esr01115
Avila, I. C., Kaschner, K. & Dormann, C. F. Current global risks to marine mammals: taking stock of the threats. Biol. Conserv. 221, 44–58 (2018).
doi: 10.1016/j.biocon.2018.02.021
Ward, E. J., Holmes, E. E. & Balcomb, K. C. Quantifying the effects of prey abundance on killer whale reproduction. J. Appl. Ecol. 46, 632–640 (2009).
doi: 10.1111/j.1365-2664.2009.01647.x
Myers, H. J., Olsen, D. W., Matkin, C. O., Horstmann, L. A. & Konar, B. Passive acoustic monitoring of killer whales (Orcinus orca) reveals year-round distribution and residency patterns in the Gulf of Alaska. Sci. Rep. 11, 20284 (2021).
Snyder, R. E. How demographic stochasticity can slow biological invasions. Ecology 84, 1333–1339 (2003).
doi: 10.1890/0012-9658(2003)084[1333:HDSCSB]2.0.CO;2
Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).
doi: 10.1086/284267
Ward, E. et al. Long‐distance migration of prey synchronizes demographic rates of top predators across broad spatial scales. Ecosphere 7, e01276 (2016).
doi: 10.1002/ecs2.1276
Ford, J. K. B., Wright, B. M., Ellis, G. M. & Candy, J. R. Chinook Salmon Predation by Resident Killer Whales: Seasonal and Regional Selectivity, Stock Identity of Prey, and Consumption Rates (Canadian Science Advisory Secretariat, 2010).
Chasco, B. E. et al. Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon. Sci. Rep. 7, 15439 (2017).
Beck, S. et al. Using opportunistic photo-identifications to detect a population decline of killer whales (Orcinus orca) in British and Irish waters. J. Mar. Biol. Assoc. 94, 1327–1333 (2014).
doi: 10.1017/S0025315413001124
Carretta, J. V. et al. US Pacific Marine Mammal Stock Assessments, 2021 (NOAA, 2022).
Muto, M. et al. Alaska Marine Mammal Stock Assessments, 2019 (NOAA, 2020).
Thomas, J. C., Khoury, R., Neeley, C. K., Akroush, A. M. & Davies, E. C. A fast CTAB method of human DNA isolation for polymerase chain reaction applications. Biochem. Educ. 25, 233–235 (1997).
doi: 10.1016/S0307-4412(97)00122-2
Bigg, M. A. Killer Whales: A Study of Their Identification, Genealogy, and Natural History in British Columbia and Washington State (Phantom, 1987).
Southern Resident Killer Whale ID Guide (Center for Whale Research, 2022).
Sambrook, J. & Russell, D. Molecular Cloning: A Laboratory Manual (Woodbury, 2000).
Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, gix120 (2017).
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
pubmed: 25409509
pmcid: 4237348
doi: 10.1371/journal.pone.0112963
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
pubmed: 28336562
pmcid: 5635820
doi: 10.1126/science.aal3327
Foote, A. D. et al. Convergent evolution of the genomes of marine mammals. Nat. Genet. 47, 272–275 (2015).
pubmed: 25621460
pmcid: 4644735
doi: 10.1038/ng.3198
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505
pmcid: 2828108
doi: 10.1093/bioinformatics/btp698
Guindon, S., Delsuc, F., Dufayard, J. -F. & Gascuel, O. in Bioinformatics for DNA Sequence Analysis (ed. Posada, D.) 113–137 (Humana Press, 2009).
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Pemberton, T. J. et al. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 91, 275–292 (2012).
pubmed: 22883143
pmcid: 3415543
doi: 10.1016/j.ajhg.2012.06.014
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
pubmed: 33590861
pmcid: 7931819
doi: 10.1093/gigascience/giab008
Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
doi: 10.18637/jss.v080.i01
Gabry, J. & Češnovar, R. Cmdstanr: R interface to ’CmdStan’ (2020).
Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
pubmed: 36568334
pmcid: 9788645
doi: 10.18637/jss.v076.i01
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P.-C. Rank-normalization, folding, and localization: an improved R-hat for assessing convergence of MCMC. Bayesian Anal. 16, 667–718 (2021).
doi: 10.1214/20-BA1221
Nietlisbach, P., Muff, S., Reid, J. M., Whitlock, M. C. & Keller, L. F. Nonequivalent lethal equivalents: models and inbreeding metrics for unbiased estimation of inbreeding load. Evol. Appl. 12, 266–279 (2019).
pubmed: 30697338
doi: 10.1111/eva.12713
Crow, J. F & Kimura, M. An Introduction to Population Genetics Theory (Harper & Row, 1970).
Kardos, M. & Luikart, G. The genetic architecture of fitness drives population viability during rapid environmental change. Am. Nat. 197, 511–525 (2021).
pubmed: 33908831
doi: 10.1086/713469
Kardos, M., Luikart, G. & Allendorf, F. W. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity 115, 63–72 (2015).
pubmed: 26059970
pmcid: 4815495
doi: 10.1038/hdy.2015.17
Kardos, M., Allendorf, F. W. & Luikart, G. Evaluating the role of inbreeding depression in heterozygosity-fitness correlations: how useful are tests for identity disequilibrium? Mol. Ecol. Resour. 14, 519–530 (2014).
pubmed: 24314098
doi: 10.1111/1755-0998.12193
Robinson, Z. L. et al. Evaluating the outcomes of genetic rescue attempts. Conserv. Biol. 35, 666–677 (2021).
pubmed: 32700770
doi: 10.1111/cobi.13596
Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).
pubmed: 17637733
doi: 10.1038/nrg2146
Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173, 891–900 (2006).
pubmed: 16547091
pmcid: 1526495
doi: 10.1534/genetics.106.057570
Simmons, M. J. & Crow, J. F. Mutations affecting fitness in Drosophila populations. Annu. Rev. Genet. 11, 49–78 (1977).
pubmed: 413473
doi: 10.1146/annurev.ge.11.120177.000405
Ballinger, M. A. & Noor, M. A. Are lethal alleles too abundant in humans? Trends Genet. 34, 87–89 (2018).
pubmed: 29290402
doi: 10.1016/j.tig.2017.12.013
Lacy, R. C., Alaks, G. & Walsh, A. Hierarchical analysis of inbreeding depression in Peromyscus polionotus. Evolution 50, 2187–2200 (1996).
pubmed: 28565659
doi: 10.2307/2410690
Deng, H.-W. & Lynch, M. Estimation of deleterious-mutation parameters in natural populations. Genetics 144, 349–360 (1996).
pubmed: 8878698
pmcid: 1207507
doi: 10.1093/genetics/144.1.349