Developing an integrated land allocation model based on linear programming and game theory.
Game theory
Geospatial information system (GIS)
Land allocation
Linear programming
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
21 Mar 2023
21 Mar 2023
Historique:
received:
26
05
2021
accepted:
09
03
2023
entrez:
21
3
2023
pubmed:
22
3
2023
medline:
24
3
2023
Statut:
epublish
Résumé
Land use configuration in any given landscape is the result of a multi-objective optimization process, which takes into account different ecological, economic, and social factors. In this process, coordinating stakeholders is a key factor to successful spatial land use optimization. Stakeholders need to be modeled as players who have the ability to interact with each other towards their best solution, while considering multiple goals and constraints at the same time. Game theory provides a tool for land use planners to model and analyze such interactions. In order to apply the spatial allocation model and address stakeholder conflicts, an integrated model based on linear programming and game theory was designed in this study. For implementing such model, we conducted an optimal land use allocation process through multi-objective land allocation (MOLA) and linear programming methods. Then, two groups of environmental and land development players were considered to implement the optimization model. The game algorithm was used to select the appropriate constraint so that the result would be acceptable to all stakeholders. The results showed that during the third round of the game, the decision-making process and the optimization of land uses reached the desired Nash Equilibrium state and the conflict between stakeholders was resolved. Ultimately, in order to localize the results, a suitable solution was presented in a GIS environment.
Identifiants
pubmed: 36943535
doi: 10.1007/s10661-023-11124-w
pii: 10.1007/s10661-023-11124-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
493Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Adhami, M., Sadeghi, S. H., Duttmann, R., & Sheikhmohammady, M. (2020). Best soil comanagement practices for two watersheds in Germany and Iran using game theory-based approaches. Science of The Total Environment, 698, 134265. https://doi.org/10.1016/j.scitotenv.2019.134265
doi: 10.1016/j.scitotenv.2019.134265
Aerts, J. C., Eisinger, E., Heuvelink, G., & Stewart, T. J. (2003). Using linear integer programming for multi-site land-use allocation. Geographical Analysis, 35, 148–169. https://doi.org/10.1111/j.1538-4632.2003.tb01106.x
doi: 10.1111/j.1538-4632.2003.tb01106.x
Arthur, J. L., & Nalle, D. J. (1997). Clarification on the use of linear programming and GIS for land-use modelling. International Journal of Geographical Information Science, 11, 397–402. https://doi.org/10.1080/136588197242338
doi: 10.1080/136588197242338
Asadollahi, Z., & SalmanMahiny, A. (2017). Assessing the impact of land use change on ecosystem services supply (carbon storage and sequestration). Environmental Reserches, 15, 203–214. https://dorl.net/dor/20.1001.1.20089597.1396.8.15.24.0
Aumann, R. J. (1985). What is game theory trying to accomplish? In K. Arrow, S0 Honkapohja (Eds.), Frontiers of Economics. Basil Blackwell. https://doi.org/10.4236/ns.2010.23033
Bahadori, B., Harbor, J., Engel, B., & Grove, M. (2000). Assessing water-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Journal Environment Management., 26, 643–658. https://doi.org/10.1002/j.1551-8833.1997.tb08325.x
doi: 10.1002/j.1551-8833.1997.tb08325.x
Batty, M. (2018). Artificial intelligence and smart cities. SAGE Publications Sage UK.
doi: 10.1177/2399808317751169
Bočková, K. H., Sláviková, G., & Gabrhel, J. (2015). Game theory as a tool of project management. Procedia – Social Behavioral Sciences, 213, 709–715. https://doi.org/10.1016/j.sbspro.2015.11.491
doi: 10.1016/j.sbspro.2015.11.491
Camerer, C. F. (1997). Progress in behavioral game theory. Journal of Economic Perspective, 11(4), 167–188. https://doi.org/10.1257/jep.11.4.167
doi: 10.1257/jep.11.4.167
Census Yearbook of Golestan Province. (2013). 1–200.
Cao, K., Batty, M., Huang, B., Liu, Y., Yu, L., & Chen, J. (2011). Spatial multi-objective land use optimization: Extensions to the non-dominated sorting genetic algorithm-II. International Journal of Geographical Information Science, 25, 1949–1969. https://doi.org/10.1080/13658816.2011.570269
doi: 10.1080/13658816.2011.570269
Carraro, C., Marchiori, C., & Sgobbi, A. (2007). Negotiating on water: Insights from noncooperative bargaining theory. Environment and Development Economics, 12(2), 329–349. https://doi.org/10.1017/S1355770X06003536
doi: 10.1017/S1355770X06003536
Chen, J. (2007). Rapid urbanization in China: A real challenge to soil protection and food security. CATENA, 69, 1–15. https://doi.org/10.1016/j.catena.2006.04.019
doi: 10.1016/j.catena.2006.04.019
Chuvieco, E. (1993). Integration of linear programming and GIS for land-use modelling. International Journal of Geographical Information Science, 7, 71–83. https://doi.org/10.1080/02693799308901940
doi: 10.1080/02693799308901940
Chuvieco, E. (2004). Integration of linear programming and GIS for land-use modelling. International Journal of Geographical Information System, 7(1), 71–83.
doi: 10.1080/02693799308901940
Collins, B. C., & Kumral, M. (2020). Game theory for analyzing and improving environmental management in the mining industry. Resources Policy, 69, 101860. https://doi.org/10.1016/j.resourpol.2020.101860
doi: 10.1016/j.resourpol.2020.101860
Drobne, S., & Lisec, A. (2009). Multi-attribute decision analysis in GIS: Weighted linear combination and ordered weighted averaging. Informatica, 33(4), 459–474.
Ducourtieux, O., Laffort, J. R., & Sacklokham, S. (2005). Land policy and farming practices in Laos. Development and Change, 36, 499–526. https://doi.org/10.1111/j.0012-155X.2005.00421.x
doi: 10.1111/j.0012-155X.2005.00421.x
Engle, B. A., Choi, J. Y., Harbor, J., & Pandey, S. (2003). Web-based DSS for hydrologic impact evaluation of small watershed land use changes. Computers and Electronics in Agriculture, 39, 241–249. https://doi.org/10.1016/S0168-1699(03)00078-4
doi: 10.1016/S0168-1699(03)00078-4
Gu, Y., Lord, A., Eika, A., Dethier, P., Samsura, D. A. A., Nordahi, B. I., Sommervoll, D. E., Krabben, E., & Halleux, J. (2021). Fair shares? Advancing land economics through cooperative game theory. Land Use Policy, 106, 105400. https://doi.org/10.1016/j.landusepol.2021.105400
doi: 10.1016/j.landusepol.2021.105400
Guoxin, T., Shibasaki, R., & Matsumura, K. (2004). Development of a GIS-based decision support system for assessing land use status. Geo-Spatial Informaton Science, 7, 72–78. https://doi.org/10.1007/BF02826679
doi: 10.1007/BF02826679
Hajehforooshnia, Sh., Soffianian, A., Salman Mahiny, A., & Fakheran, S. (2011). Multi objective land allocation (MOLA) for zoning Ghamishloo Wildlife Sanctuary in Iran. Journal for Nature Conservation., 19(4), 254–262. https://doi.org/10.1016/j.jnc.2011.03.001
doi: 10.1016/j.jnc.2011.03.001
Hasti, F., SalmanMahiny, A., Jolaei, R., & Aghili, S. M. (2016a). Game theory, a useful approach for resolving land use planning. Journal Environment and Development., 12, 43–54. (In Persian with English abstract).
Hasti, F., Rouhi, H., Khodakarami, L. & Mahiny, A. S. (2016b). Zoning the protected area of Shahoo/Kosalan using RS and GIS. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 10(8), 74–81. https://doi.org/10.9790/2402-1008017481
Homayounfar, M., Ganji, A., Khalili, D., & Mousavi, A. A. (2010). A model for reservoir operation based on the game theory. Iran-Water Resources Research, 6(2), 14–26. (In Persian with English abstract).
Hui, E., & Bao, H. (2013). The logic behind conflicts in land acquisitions in contemporary China: A framework based upon game theory. Land Use Policy, 30, 373–380. https://doi.org/10.1016/j.landusepol.2012.04.001
doi: 10.1016/j.landusepol.2012.04.001
Ikonen, P., Rantala, M., Miettinen, J., Kuittinen, S., Hujala, T., Mehtätalo, L., & Pappinen, A. (2020). Grounds for improving the implementation of game-oriented forest management – A double sampling survey of Finnish forest owners and professionals. Forest Policy and Economics, 119, 102266. https://doi.org/10.1016/j.forpol.2020.102266
doi: 10.1016/j.forpol.2020.102266
Jana, A., Basu, R., & Mukherijee, C. (2020). A game theoretic approach to optimize multi-stakeholder utilities for land acquisition negotiations with informality. Socio-Economic Planning Sciences, 69, 100717. https://doi.org/10.1016/j.seps.2019.06.002
doi: 10.1016/j.seps.2019.06.002
Kaiser, E. J., Godschalk, D. R., & Chapin, F. S. (1995). Urban land use planning. University of Illinois Press.
Lee, C. S., & Chang, S. P. (2005). Interactive fuzzy optimization for an economic and environmental balance in a river system. Water Research, 39(1), 221–231. https://doi.org/10.1016/j.watres.2004.09.013
doi: 10.1016/j.watres.2004.09.013
Lee, C. S. (2012). Multi-objective game-theory models for conflict analysis in reservoir watershed management. Chemosphere, 87(6), 608–613. https://doi.org/10.1016/j.chemosphere.2012.01.014
doi: 10.1016/j.chemosphere.2012.01.014
Li, X., & Yeh, A.G.-O. (2000). Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14, 131–152. https://doi.org/10.1080/136588100240886
doi: 10.1080/136588100240886
Li, X., & Yeh, A.G.-O. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16, 323–343. https://doi.org/10.1080/13658810210137004
doi: 10.1080/13658810210137004
Li, X., Shi, X., He, J., & Liu, X. (2011). Coupling simulation and optimization to solve planning problems in a fast-developing area. Annals of the Association of American Geographers, 101, 1032–1048. https://doi.org/10.1080/00045608.2011.577366
doi: 10.1080/00045608.2011.577366
Ligmann-Zielinska, A., Church, R. L., & Jankowski, P. (2008). Spatial optimization as a generative technique for sustainable multiobjective land-use allocation. International Journal of Geographical Information Science, 22, 601–622. https://doi.org/10.1080/13658810701587495
doi: 10.1080/13658810701587495
Liu, X., Li, X., Shi, X., Huang, K., & Liu, Y. (2012a). A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas. International Journal of Geographical Information Science, 26, 1325–1343. https://doi.org/10.1080/13658816.2011.635594
doi: 10.1080/13658816.2011.635594
Liu, Y., Liu, D., Liu, Y., He, J., Jiao, L., & Chen, Y. (2012b). Rural land use spatial allocation in the semiarid loess hilly area in China: Using a particle swarm optimization model equipped with multi-objective optimization techniques. Science China Earth Sciences, 55, 1166–1177. https://doi.org/10.1007/s11430-011-4347-2
doi: 10.1007/s11430-011-4347-2
Liu, Y., Wang, H., Ji, Y., Liu, Z., & Zhao, X. (2012c). Land use zoning at the county level based on a multi-objective particle swarm optimization algorithm: A case study from Yicheng, China. International Journal of Environmental Research and Public Health, 9, 2801–2826. https://doi.org/10.3390/ijerph9082801
doi: 10.3390/ijerph9082801
Liu, Y., Tang, W., He, J., Liu, Y., Ai, T., & Liu, D. (2015). A land-use spatial optimization model based on genetic optimization and game theory. Computers, Environment and Urban Systems, 49(1–14). https://doi.org/10.1016/j.compenvurbsys.2014.09.002
Liu, Y., Hu, Y., Hu, Y., Gao, Y., & Liu, Zh. (2021). Water quality characteristics and assessment of Yongding New River by improved comprehensive water quality identification index based on game theory. Journal of Environmental Sciences., 104, 40–52. https://doi.org/10.1016/j.jes.2020.10.021
doi: 10.1016/j.jes.2020.10.021
Lund, J. R., & Palmer, R. N. (1997). Water resource system modeling for conflict resolution? Water Resources, 3(108), 70–82.
Ma, Y. (2004). L-THIA: A useful hydrologic impact assessment model. Journal Nature and Sciences, 2, 68–73.
Maleki, J., Masoumi, Z., Hakimpour, F., & Coello, C. A. (2020). A spatial land-use planning support system based on game theory. Land Use Policy, 99, 105013. https://doi.org/10.1016/j.landusepol.2020.105013
doi: 10.1016/j.landusepol.2020.105013
Mazandaran Zadeh, H., Ghaheri, A., & Abdoli, G. (2010). A conflict resolution model among municipal and agricultural users by game theory for sustainable operation of a common aquifer. Eqtesad-E Keshavarzi Va Towse’e, 17(4), 77–102. (In Persian with English abstract).
Mohammadi Limaei, S. (2006). Economically optimal values and decisions in Iranian forest management, Doctoral Thesis. Swedish University of Agricultural Sciences, Umea, Sweden (No 2006: 91). http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-1245
MohammadiLimaei, S. (2007). A game theory approach to the sawn wood and pulpwood markets in the north of Iran. Caspian Journal of Environmental Sciences, 5(1), 1–10.
MohammadiLimaei, S. (2010). Mixed strategy game theory, application in forest industry. Forest Policy and Economics, 12(7), 527–531. https://doi.org/10.1016/j.forpol.2010.06.009
doi: 10.1016/j.forpol.2010.06.009
Mohammadifar, A., Gholami, H., Comino, J. R., & Collins, A. L. (2021). Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory. CATENA, 200, 105178. https://doi.org/10.1016/j.catena.2021.105178
doi: 10.1016/j.catena.2021.105178
Moradi, S. M., & Limaei, S. (2018). Multi-objective game theory model and fuzzy programing approach for sustainable watershed management. Land Use Policy, 71, 363–371. https://doi.org/10.1016/j.landusepol.2017.12.008
doi: 10.1016/j.landusepol.2017.12.008
Myerson, R. B. (1992). On the value of game theory in social science. Rationality and Society, 4, 62–73. https://econpapers.repec.org/scripts/redir.pf?u=http%3A%2F%2Frss.sagepub.com%2Fcontent%2F4%2F1%2F62.abstract;h=repec:sae:ratsoc:v:4:y:1992:i:1:p:62-73
Nazari, S., Ahmadi, A., Kamrani Rad, S., & Ebrahimi, B. (2020). Application of non-cooperative dynamic game theory for groundwater conflict resolution. Journal of Environmental Management, 270, 110889. https://doi.org/10.1016/j.jenvman.2020.110889
doi: 10.1016/j.jenvman.2020.110889
Nikkami, D., Elektorowicz, M., & Mehuys, G. R. (2002). Optimizing the management of soil erosion. Water Quality Research Journal, 37(3), 577–586.
doi: 10.2166/wqrj.2002.038
Ozsari, S., Uguz, H., & Hakli, H. (2021). Implementation of meta-heuristic optimization algorithms for interview problem in land consolidation: A case study in Konya/Turkey. Land Use Policy, 108, 105511. https://doi.org/10.1016/j.landusepol.2021.105511
doi: 10.1016/j.landusepol.2021.105511
Pfaff, A. S. P., & Sanchez-Azofeifa, G. A. (2004). deforestation pressure and biological reserve planning: A conceptual approach and an illustrative application for Costa Rica. Resource and Energy Economics, 26, 237–254. https://doi.org/10.1016/j.reseneeco.2003.11.009
doi: 10.1016/j.reseneeco.2003.11.009
Parrachino, I., Dinar, A., & Patrone, F. (2006a). Cooperative game theory and its application to natural, environmental, and water resource issues: 3. Application to Water Resources. pp. 4074 (World Bank Policy Research Working Paper No. 4074, WPS4074, Washington, DC). http://hdl.handle.net/10986/8848
Parrachino, I., Zara, S., & Patrone, F. (2006b). Cooperative game theory and its application to natural, environmental, and water resource issues: 1. Basic Theory. (World Bank Policy Research Working Paper No. 4072, WPS4072, Washington, DC). http://hdl.handle.net/10986/8852
Pourzand, F., & Zibaei, M. (2010). Application of game theory for the optimal groundwater extraction in Firozabad plain. Journal Agricultural Economics, 5(4), 1–24 (In Persian with English abstract). http://www.iranianjae.ir/article_9484_en.html
Rasmusen, E. (2001). Games and information: An introduction to game theory. Wiley- Blackwell.
Riedel, C. (2003). Optimizing land use planning for mountainous regions using LP and GIS towards Sustainability. Journal of Soil Conservation USA, 34(1), 121–124.
Rodrigues, A., Koeppl, H., Ohtsuki, H., & Satake, A. (2009). A game theoretical model of deforestation in human–environment relationships. Journal of Theoretical Biology, 258(1), 127–134. https://doi.org/10.1016/j.jtbi.2009.01.005
doi: 10.1016/j.jtbi.2009.01.005
Raquel, S., Szidarovszky, F., Coppola, E., Jr., & Rajano, A. (2007). Application of game theory for a groundwater conflict in Mexico. Journal of Environmental Management, 84(4), 560–571. https://doi.org/10.1016/j.jenvman.2006.07.011
doi: 10.1016/j.jenvman.2006.07.011
Sadeghi, S., Jalili, K., & Nikkami, D. (2009). Land use optimization in watershed scale. Land Use Policy, 26, 186–193. https://doi.org/10.1016/j.landusepol.2008.02.007
doi: 10.1016/j.landusepol.2008.02.007
Sadooghi, S. E., Taleai, M., & Abolhasani, S. (2022). Simulation of urban growth scenarios using integration of multi-criteria analysis and game theory. Land Use Policy, 120, 106267. https://doi.org/10.1016/j.landusepol.2022.106267
doi: 10.1016/j.landusepol.2022.106267
Shabani, M. (2010). Effect of optimizing land use on eroion and benefit of watershed: The case study of Zakhard watershed in Fars province. Iran Journal of Natural Geography, 8, 83–98.
Shahi, Ch., & Kant, Sh. (2007). An evolutionary game-theoretic approach to the strategies of community members under Joint Forest Management regime. Forest Policy and Economics, 9(7), 763–775. https://doi.org/10.1016/j.forpol.2006.04.002
doi: 10.1016/j.forpol.2006.04.002
Samsura, D., Ary, A., Van der Krabben, E., & Van Deemen, A. M. A. (2010). A game theory approach to the analysis of land and property development processes. Land Use Policy, 27(2010), 564–578. https://doi.org/10.1016/j.landusepol.2009.07.012
doi: 10.1016/j.landusepol.2009.07.012
Shafi, A., Wang, Zh., Ehsan, M., Ahmed Riaz, F., Rashid Ali, M., AdoréMamodson, Z., & Abbasi, SSh. (2022). A game theory approach to the logic of illegitimate behavior induced during land conflict litigation in urban and peri-urban areas of Pakistan. Cities, 130, 103990. https://doi.org/10.1016/j.cities.2022.103990
doi: 10.1016/j.cities.2022.103990
Shields, D. J., Tolwinski, B., & Kent, B. M. (1999). Models for conflict resolution in ecosystem management. Socio-Economic Planning Sciences, 33(1), 61–84. https://doi.org/10.1016/S0038-0121(98)00003-2
doi: 10.1016/S0038-0121(98)00003-2
Sobuhi, M., & Mojarad, E. (2010). Application of game theory for groundwater resources management of atrak. Journal of Economics and Agricultural Development, 24(1), 1–12 (In Persian with English abstract). https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=195240
Song, M., & Chen, D. (2018). An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA). Geo-Spatial Infomation Science, 21, 273–287. https://doi.org/10.1080/10095020.2018.1489576
doi: 10.1080/10095020.2018.1489576
Tang, D., Liu, H., Song, E., & Chang, Sh. (2020). Urban expansion simulation from the perspective of land acquisition-based on bargaining model and ant colony optimization. Computers, Environment and Urban Systems, 82, 101504. https://doi.org/10.1016/j.compenvurbsys.2020.101504
doi: 10.1016/j.compenvurbsys.2020.101504
Türk, E., & Zwick, P. D. (2019). Optimization of land use decisions using binary integer programming: The case of Hillsborough County, Florida, USA. Journal of Environmental Management, 235, 240–249. https://doi.org/10.1016/j.jenvman.2019.01.031
doi: 10.1016/j.jenvman.2019.01.031
Weng, Q. (2001). Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Journal Environment Management, 28, 737–748. https://doi.org/10.1007/s002670010258
doi: 10.1007/s002670010258
Wu, Y., Wu, C., & Shen, L. (2005). Modeling the decision-making using game theory in monitoring land-use practice in China. Systems Engineering – Theory & Practice, 9, 65–70. http://hdl.handle.net/10397/33223
Wu, X., & Grubesic, T. H. (2010). Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm. Journal of Geographical Systems, 12, 409–433. https://doi.org/10.1007/s10109-010-0107-7
doi: 10.1007/s10109-010-0107-7
Yazdian, M., Rakhshandehroo, Gh., Nikoo, M. R., GhorbaniMooselu, M., Gandomi, A. H., & Honar, T. (2021). Groundwater sustainability Developing a non-cooperative optimal management scenario in shared groundwater resources under water bankruptcy conditions. Journal of Environmental Management, 292, 112807. https://doi.org/10.1016/j.jenvman.2021.112807
doi: 10.1016/j.jenvman.2021.112807
Ye, Ch., Chen, L., & Zhou, J. (2021). Evaluation model of forest eco economic benefits based on discrete particle swarm optimization. Environmental Technology & Innovation, 22, 101426. https://doi.org/10.1016/j.eti.2021.101426
doi: 10.1016/j.eti.2021.101426
Zhang, W. (2004). Game theory and information economics. Shanghai People’s Publishing House.
Zhang, Y., Li, A., & Fung, T. (2012). Using GIS and multi-criteria decision analysis for conflict resolution in land use planning. Procedia Environmental Sciences, 13, 2264–2273. https://cyberleninka.org/article/n/458151