Gamma-Aminobutyric Acid Type A Receptor Variants are Associated with Autism Spectrum Disorders.
Autism spectrum disorders
GABRA5
GABRB3
GABRG3
Gene expression
Journal
Journal of molecular neuroscience : MN
ISSN: 1559-1166
Titre abrégé: J Mol Neurosci
Pays: United States
ID NLM: 9002991
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
04
01
2023
accepted:
01
03
2023
medline:
23
5
2023
pubmed:
22
3
2023
entrez:
21
3
2023
Statut:
ppublish
Résumé
Despite several efforts to identify the causes of autism spectrum disorders (ASD), its etiology remains still unclear. Among other aspects, genes that encode neurotransmitter receptors are strong candidates for autism. Here, we wanted to study some genetic variants of gamma-aminobutyric acid (GABA) receptor subunit genes GABRB3, GABRG3, and GABRA5, located on chromosome 15q11-q13 that might contribute to the etiology of ASD in the affected children of West Bengal. rs7180158, rs2081648 (GABRB3); rs12910555 (GABRG3); rs35399885, rs35832850 (GABRA5) were analyzed in 316 children with ASD and 227 healthy controls. Phenotypic associations were evaluated by Childhood Autism Rating Scale (CARS). Gene expression levels were measured by quantitative real-time PCR. ASD probands showed a higher frequency of "A" allele for rs7180158, "G" allele for rs12901555, and "T" allele for rs35399885. The GA + AA genotypes (rs7180158) and CT + TT genotypes (rs35399885) were found to confer significant risk towards ASD. rs2081648 was found to have transmission bias in the family. Additionally, these variants were found to be associated with one or more of ASD-associated phenotypic traits. Multifactor dimensionality reduction (MDR) analyses showed mostly independent contributory effects of some of the variants. Again, the gene expression levels of GABRB3, GABRG3, and GABRA5 were downregulated in the cases than the controls. ForGABRA5 rs35399885, the CC genotypes corresponded to higher expression levels compared to the other groups. This study reveals that genetic variants of GABA
Identifiants
pubmed: 36943547
doi: 10.1007/s12031-023-02113-2
pii: 10.1007/s12031-023-02113-2
doi:
Substances chimiques
Receptors, GABA
0
Receptors, GABA-A
0
gamma-Aminobutyric Acid
56-12-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
237-249Subventions
Organisme : Indian Council of Medical Research
ID : 5/4-4/165M/2020-NCD-II, 2021
Organisme : Ganapati Sugar industries Ltd
ID : CSR Fund 2021-2022
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. 5th ed.Washington: DC
Centers for Disease control and Prevention (2018) Prevalence of autism spectrum disorder among children aged 8 years— autism and developmental disabilities monitoring network, 11 sites: USA
Cetin FH, Tunca H, Guney E, Iseri E (2015) Neurotransmitter systems in autism spectrum disorder. Autism Spectrum Disorder - Recent Advances. https://doi.org/10.5772/59122
doi: 10.5772/59122
Cellot G, Cherubini E (2014) GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr. https://doi.org/10.3389/fped.2014.00070
doi: 10.3389/fped.2014.00070
pubmed: 25072038
pmcid: 4085902
Chaste P, Leboyer M (2012) Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. https://doi.org/10.31887/DCNS.2012.14.3/pchaste
doi: 10.31887/DCNS.2012.14.3/pchaste
Coghlan S, Horder J, Inkster B et al (2012) GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Bio Behav Rev. https://doi.org/10.1016/j.neubiorev.2012.07.005
doi: 10.1016/j.neubiorev.2012.07.005
Demarque M, Represa A, Becq H et al (2002) Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron. https://doi.org/10.1016/S0896-6273(02)01053-X
doi: 10.1016/S0896-6273(02)01053-X
pubmed: 12495621
DeMayo MM, Harris AD, Song YCJ et al (2021) Age-related parietal GABA alterations in children with autism spectrum disorder. Autism Res. https://doi.org/10.1002/aur.2487
doi: 10.1002/aur.2487
pubmed: 33634588
Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD (2009) GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord. https://doi.org/10.1007/s10803-008-0646-7
doi: 10.1007/s10803-008-0646-7
pubmed: 18821008
Galanopoulou AS (2008) GABA
doi: 10.2174/157015908783769653
pubmed: 19305785
pmcid: 2645547
Ganguly K, Schinder AF, Wong ST, Poo M et al (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell. https://doi.org/10.1016/s0092-8674(01)00341-5
doi: 10.1016/s0092-8674(01)00341-5
pubmed: 11371348
Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics. https://doi.org/10.1093/bioinformatics/btf869
doi: 10.1093/bioinformatics/btf869
pubmed: 12846935
pmcid: 183838
Helsinki (2002) World medical association. Ethical principles for medical research involving human subjects. 52nd WMA General Assembly. http://www.wma.net
Horder J, Petrinovic MM, Mendez MA et al (2018) Glutamate and GABA in autism spectrum disorder—a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatry. https://doi.org/10.1038/s41398-018-0155-1
doi: 10.1038/s41398-018-0155-1
pubmed: 29802263
pmcid: 5970172
Hussman JP (2001) Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J AutismDevDisord. https://doi.org/10.1023/A:1010715619091
doi: 10.1023/A:1010715619091
Kim SJ, Brune CW, Kistner EO et al (2008) Transmission disequilibrium testing of the chromosome 15q11-q13 region in autism. Am J Med Genet B Neuro Psychiatric Genet 147B:1116–1125. https://doi.org/10.1002/ajmg.b.30733
doi: 10.1002/ajmg.b.30733
Ma DQ, Whitehead PL, Menold MM et al (2005) Identifcation of signifcant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet. https://doi.org/10.1086/433195
doi: 10.1086/433195
pubmed: 16080114
pmcid: 1226204
Mahdavi M, Kheirollahi M, Riahi R et al (2018) Meta-analysis of the association between GABA receptor polymorphisms and autism spectrum disorder (ASD). J Mol Neurosci. https://doi.org/10.1007/s12031-018-1073-7
doi: 10.1007/s12031-018-1073-7
pubmed: 29725984
Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor: NY
Marotta R, Risoleo MC, Messina G et al (2020) The neurochemistry of autism. Brain Sci. https://doi.org/10.3390/brainsci10030163
doi: 10.3390/brainsci10030163
pubmed: 32182969
pmcid: 7139720
Masi A, DeMayo MM, Glozier N, Guastella AJ (2017) An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull. https://doi.org/10.1007/s12264-017-0100-y
doi: 10.1007/s12264-017-0100-y
pubmed: 28238116
pmcid: 5360854
Mccormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol. https://doi.org/10.1152/jn.1989.62.5.1018
doi: 10.1152/jn.1989.62.5.1018
pubmed: 2573696
Mesbah-Oskui L, Penna A, Orser BA, Horner RL (2017) Reduced expression of α5GABA
doi: 10.1016/j.ntt.2016.10.009
Nguyen L, Rigo JM, Rocher V et al (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res. https://doi.org/10.1007/s004410000343
doi: 10.1007/s004410000343
pubmed: 11545256
Provenzanoa G, Sgadòa P, Genovesia S et al (2015) Hippocampal dysregulation of FMRP/mGluR5 signaling in engrailed-2 knockout mice: a model of autism spectrum disorders. NeuroReport. https://doi.org/10.1097/WNR.0000000000000477
doi: 10.1097/WNR.0000000000000477
Rudra A, Belmonte MK, Soni PK et al (2017) Prevalence of autism spectrum disorder and autistic symptoms in a school-based cohort of children in Kolkata. Autism Res, India. https://doi.org/10.1002/aur.1812
doi: 10.1002/aur.1812
Schanen NC (2006) Epigenetics of autism spectrum disorders. HumMol Genet. https://doi.org/10.1093/hmg/ddl213
doi: 10.1093/hmg/ddl213
Schopler E, Reichler R, DeVellis R (1980) Toward objective classification of childhood autism: childhood autism rating scale (CARS). J Autism Dev Disord. https://doi.org/10.1007/BF02408436
doi: 10.1007/BF02408436
pubmed: 6927682
Schopler E, Reichler RJ, Renner BR (1988) The childhood autism rating scale. Western Psychological Services
Sheffler ZM, Reddy V, Pillarisetty LS (2022) Physiology, neurotransmitters. StatPearls: Treasure Island
Sutclife JS, Nurmi EL, Lombroso PJ (2003) Genetics of childhood disorders: XLVII Autism, Part 6: Duplication and inherited susceptibility of chromosome 15q11-q13 Genes in Autism. J Am Acad Child Adolesc Psychiatry. https://doi.org/10.1097/00004583-200302000-00021
doi: 10.1097/00004583-200302000-00021
Wang L, Li J, ShuangM et al (2018) Association study and mutation sequencing of genes on chromosome 15q11-q13 identified GABRG3 as a susceptibility gene for autism in Chinese Han population. Transl Psychiatry. https://doi.org/10.1038/s41398-018-0197-4
doi: 10.1038/s41398-018-0197-4
pubmed: 30563964
pmcid: 6298972
Warrier V, Baron-Cohen S, Chakrabarti B (2013) Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism. Mol Autism. https://doi.org/10.1186/2040-2392-4-48
doi: 10.1186/2040-2392-4-48
pubmed: 24321478
pmcid: 3903107
Yang S, Guo X, Dong X et al (2017) GABAA receptor subunit gene polymorphisms predict symptom-based and developmental deficts in Chinese Han children and adolescents with autistic spectrum disorders. Sci Rep. https://doi.org/10.1038/s41598-017-03666-0
doi: 10.1038/s41598-017-03666-0
pubmed: 29273747
pmcid: 5741750