Digital image analysis of erythroblastic islands in myelodysplastic syndromes.
MDS
erythropoiesis
morphology
pathology
Journal
International journal of laboratory hematology
ISSN: 1751-553X
Titre abrégé: Int J Lab Hematol
Pays: England
ID NLM: 101300213
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
28
06
2022
accepted:
21
11
2022
medline:
16
5
2023
pubmed:
23
3
2023
entrez:
22
3
2023
Statut:
ppublish
Résumé
Myelodysplastic syndromes (MDS) encompass a diverse group of myeloid neoplasms for which the diagnosis of low-grade subtypes remains challenging. Erythroblastic islands (EBIs) are highly organized units of erythroid proliferation, differentiation, and enucleation. EBI disruption is frequently observed and is believed to be one of the early changes in MDS. In this study, we digitally analyzed bone marrow biopsies dual stained with alpha-hemoglobin stabilizing protein (AHSP) and CD163 to quantitatively study features of EBIs in MDS, among MDS subtypes, as well as those in normal marrows and marrows with other causes of anemia. EBIs in MDS specimens were smaller in size and higher in density compared to both normal and non-MDS anemia specimens. Increased CD163 expression within the EBIs is observed in both MDS and other causes of anemia. A combination of increased EBI density and CD163 expression is seen in association with MDS with high-risk cytogenetics and multiple adverse mutations. As a proof-of-concept study, we show that EBI features can be relatively easily quantified with AHSP/CD163 dual immunohistochemistry and open-source imaging analysis software, highlighting those that are unique to MDS, and which may be prognostically relevant. Further studies of the measurable EBI features may provide valuable and novel tools to aid MDS diagnosis and prognostication in the era of digital pathology.
Substances chimiques
AHSP protein, human
0
Blood Proteins
0
Molecular Chaperones
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
289-296Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383(14):1358-1374. doi:10.1056/NEJMra1904794
Li W, Guo R, Song Y, Jiang Z. Erythroblastic island macrophages shape normal erythropoiesis and drive associated disorders in erythroid hematopoietic diseases. Front Cell Dev Biol. 2021;8.
Yeo JH, McAllan BM, Fraser ST. Scanning electron microscopy reveals two distinct classes of erythroblastic island isolated from adult mammalian bone marrow. Microsc Microanal. 2016;22(2):368-378. doi:10.1017/S1431927616000155
Heideveld E, Hampton-O'Neil LA, Cross SJ, et al. Glucocorticoids induce differentiation of monocytes towards macrophages that share functional and phenotypical aspects with erythroblastic island macrophages. Haematologica. 2018;103(3):395-405. doi:10.3324/haematol.2017.179341
Li W, Wang Y, Zhao H, et al. Identification and transcriptome analysis of erythroblastic Island macrophages. Blood. 2019;134(5):480-491. doi:10.1182/blood.2019000430
Ohgami RS, Chisholm KM, Ma L, Arber DA. E-cadherin is a specific marker for erythroid differentiation and has utility, in combination with CD117 and CD34, for enumerating myeloblasts in hematopoietic neoplasms. Am J Clin Pathol. 2014;141(5):656-664. doi:10.1309/AJCP8M4QQTAZPGRP
Lee WY, Weinberg OK, Pinkus GS. GATA1 is a sensitive and specific nuclear marker for erythroid and megakaryocytic lineages. Am J Clin Pathol. 2017;147(4):420-426. doi:10.1093/ajcp/aqx018
Kihm AJ, Kong Y, Hong W, et al. An abundant erythroid protein that stabilizes free α-haemoglobin. Nature. 2002;417(6890):758-763. doi:10.1038/nature00803
Walczak J, Camargo Johnson MD, Muthumalaiappan K. Stage specific expression pattern of alpha-hemoglobin-stabilizing-protein (AHSP) portrayed in erythroblast chronology. Methods Protoc. 2020;3(3):46. doi:10.3390/mps3030046
Raess PW, Paessler ME, Bagg A, Weiss MJ, Choi JK. α-Hemoglobin-stabilizing protein is a sensitive and specific marker of erythroid precursors. Am J Surg Pathol. 2012;36(10):1538-1547.
Fabriek BO, Polfliet MMJ, Vloet RPM, et al. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor. Blood. 2007;109(12):5223-5229. doi:10.1182/blood-2006-08-036467
Valent P, Büsche G, Theurl I, et al. Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica. 2018;103(10):1593-1603. doi:10.3324/haematol.2018.192518
Buesche G, Teoman H, Schneider RK, et al. Evolution of severe (transfusion-dependent) anaemia in myelodysplastic syndromes with 5q deletion is characterized by a macrophage-associated failure of the eythropoietic niche. Br J Haematol. 2022;198(1):114-130. doi:10.1111/bjh.18163
Elvarsdóttir EM, Mortera-Blanco T, Dimitriou M, et al. A three-dimensional in vitro model of erythropoiesis recapitulates erythroid failure in myelodysplastic syndromes. Leukemia. 2020;34(1):271-282. doi:10.1038/s41375-019-0532-7
Buesche G, Teoman H, Giagounidis A, et al. Impaired formation of erythroblastic islands is associated with erythroid failure and poor prognosis in a significant proportion of patients with myelodysplastic syndromes. Haematologica. 2016;101(5):e177-e181. doi:10.3324/haematol.2015.129015
Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878. doi:10.1038/s41598-017-17204-5
R Core Team. R: a language and environment for statistical computing. 2021. https://www.r-project.org/. Accessed November 28, 2022.
Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4(43):1686. doi:10.21105/joss.01686
Maechler M, Rousseeuw P, Struyf A, et al. Cluster: cluster analysis basics and extensions. R Package Version 2.1.3. 2022. https://cran.r-project.org/package=cluster. Accessed November 28, 2022.
Kassambara A, Mundt F. factoextra: extract and visualize the results of multivariate data analyses. 2020. https://cran.r-project.org/web/packages/factoextra/index.html. Accessed November 28, 2022.
Schanz J, Tüchler H, Solé F, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30(8):820-829. doi:10.1200/JCO.2011.35.6394
Caponetti GC, Bagg A. Mutations in myelodysplastic syndromes: Core abnormalities and CHIPping away at the edges. Int J Lab Hematol. 2020;42(6):671-684. doi:10.1111/ijlh.13284
Nazha A, Komrokji R, Meggendorfer M, et al. Personalized prediction model to risk stratify patients with myelodysplastic syndromes. J Clin Oncol. 2021;39(33):3737-3746. doi:10.1200/JCO.20.02810
Jin X, Han J. K-means clustering. In: Sammut C, Webb GI, eds. Encyclopedia of Machine Learning. Springer; 2010:563-564. doi:10.1007/978-0-387-30164-8_425