Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities.

dispersal global change mesocosm experiment metacommunity phytoplankton trophic interactions warming zooplankton

Journal

Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746

Informations de publication

Date de publication:
06 2023
Historique:
revised: 08 01 2023
received: 18 09 2022
accepted: 07 03 2023
medline: 3 5 2023
pubmed: 23 3 2023
entrez: 22 3 2023
Statut: ppublish

Résumé

Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.

Identifiants

pubmed: 36946870
doi: 10.1111/gcb.16692
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3054-3071

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : BE 61944/1-1
Organisme : Horizon 2020 Framework Programme
ID : 731065
Organisme : Horizon 2020 Framework Programme
ID : 871081
Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : RRF-2.3.1-21-2022-00014

Informations de copyright

© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Références

Adrian, R., & Schneider-Olt, B. (1999). Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. Journal of Plankton Research, 21(11), 2175-2190. https://doi.org/10.1093/plankt/21.11.2175
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Arar, E., & Collins, G. (1997). Method 445.0. In-vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. US Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=309417
Bartoń, K. (2022). MuMIn: Multi-Model Inference (1.46.0). https://CRAN.R-project.org/package=MuMIn
Bender, E. A., Case, T. J., & Gilpin, M. E. (1984). Perturbation experiments in community ecology: Theory and practice. Ecology, 65(1), 1-13. https://doi.org/10.2307/1939452
Bennett, J. M., Sunday, J., Calosi, P., Villalobos, F., Martínez, B., Molina-Venegas, R., Araújo, M. B., Algar, A. C., Clusella-Trullas, S., Hawkins, B. A., Keith, S. A., Kühn, I., Rahbek, C., Rodríguez, L., Singer, A., Morales-Castilla, I., & Olalla-Tárraga, M. Á. (2021). The evolution of critical thermal limits of life on earth. Nature Communications, 12(1), 1198. https://doi.org/10.1038/s41467-021-21263-8
Bottrell, H. H., Duncan, A., Gliwicz, Z., Grygierek, E., Herzig, A., Hilbricht-Ilkowska, A., Kurasawa, H., Larsson, P., & Weglenska, T. (1976). Review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 21, 477-483.
Brandl, Z. (2005). Freshwater copepods and rotifers: Predators and their prey. Hydrobiologia, 546(1), 475-489. https://doi.org/10.1007/s10750-005-4290-3
Brett, M. T., Müller-Navarra, D. C., & Persson, J. (2009). Crustacean zooplankton fatty acid composition. In M. Kainz, M. T. Brett, & M. T. Arts (Eds.), Lipids in aquatic ecosystems (pp. 115-146). Springer. https://doi.org/10.1007/978-0-387-89366-2_6
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771-1789. https://doi.org/10.1890/03-9000
Cáceres, C. E., & Soluk, D. A. (2002). Blowing in the wind: A field test of overland dispersal and colonization by aquatic invertebrates. Oecologia, 131(3), 402-408. https://doi.org/10.1007/s00442-002-0897-5
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59-67. https://doi.org/10.1038/nature11148
Clark, G. F., & Johnston, E. L. (2011). Temporal change in the diversity-invasibility relationship in the presence of a disturbance regime. Ecology Letters, 14(1), 52-57. https://doi.org/10.1111/j.1461-0248.2010.01550.x
Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (Eds.). (1999). Standard methods for the examination of water and wastewater (20th ed.). APHA, AWWA, WEF.
Cohen, G. M., & Shurin, J. B. (2003). Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos, 103(3), 603-617. https://doi.org/10.1034/j.1600-0706.2003.12660.x
Comte, L., & Olden, J. D. (2017). Climatic vulnerability of the world's freshwater and marine fishes. Nature Climate Change, 7(10), 718-722. https://doi.org/10.1038/nclimate3382
Davidson, N. C., & Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934-941. https://doi.org/10.1071/MF14173
Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88(3), 528-534. https://doi.org/10.1046/j.1365-2745.2000.00473.x
Davison, R., Jacquemyn, H., Adriaens, D., Honnay, O., Kroon, H. D., & Tuljapurkar, S. (2010). Demographic effects of extreme weather events on a short-lived calcareous grassland species: Stochastic life table response experiments. Journal of Ecology, 98(2), 255-267. https://doi.org/10.1111/j.1365-2745.2009.01611.x
de Boer, M. K., Moor, H., Matthiessen, B., Hillebrand, H., & Eriksson, B. K. (2014). Dispersal restricts local biomass but promotes the recovery of metacommunities after temperature stress. Oikos, 123(6), 762-768. https://doi.org/10.1111/j.1600-0706.2013.00927.x
Dlouhá, Š., Thielsch, A., Kraus, R. H. S., Seda, J., Schwenk, K., & Petrusek, A. (2010). Identifying hybridizing taxa within the Daphnia longispina species complex: A comparison of genetic methods and phenotypic approaches. Hydrobiologia, 643(1), 107-122. https://doi.org/10.1007/s10750-010-0128-8
Duffy, J. E., Cardinale, B. J., France, K. E., McIntyre, P. B., Thébault, E., & Loreau, M. (2007). The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecology Letters, 10(6), 522-538. https://doi.org/10.1111/j.1461-0248.2007.01037.x
Eggers, S. L., Eriksson, B. K., & Matthiessen, B. (2012). A heat wave and dispersal cause dominance shift and decrease biomass in experimental metacommunities. Oikos, 121(5), 721-733. https://doi.org/10.1111/j.1600-0706.2011.19714.x
Fischer, E. M., & Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 3(6), 398-403. https://doi.org/10.1038/ngeo866
Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. Nature, 560(7718), 360-364. https://doi.org/10.1038/s41586-018-0383-9
Fussmann, K. E., Schwarzmüller, F., Brose, U., Jousset, A., & Rall, B. C. (2014). Ecological stability in response to warming. Nature Climate Change, 4(3), 206-210. https://doi.org/10.1038/nclimate2134
Gliwicz, Z. M. (1990). Food thresholds and body size in cladocerans. Nature, 343(6259), 638-640. https://doi.org/10.1038/343638a0
Guelzow, N., Muijsers, F., Ptacnik, R., & Hillebrand, H. (2017). Functional and structural stability are linked in phytoplankton metacommunities of different connectivity. Ecography, 40(6), 719-732. https://doi.org/10.1111/ecog.02458
Gutschick, V. P., & BassiriRad, H. (2003). Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences. New Phytologist, 160(1), 21-42. https://doi.org/10.1046/j.1469-8137.2003.00866.x
Haegeman, B., & Loreau, M. (2014). General relationships between consumer dispersal, resource dispersal and metacommunity diversity. Ecology Letters, 17(2), 175-184. https://doi.org/10.1111/ele.12214
Hansen, H. P., & Koroleff, F. (1999). Determination of nutrients. In K. Grasshoff, K. Kremling, & M. Ehrhardt (Eds.), Methods of seawater analysis (3rd ed., pp. 159-228). Wiley-VCH. https://doi.org/10.1002/9783527613984.ch10
Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A., Perkins-Kirkpatrick, S. E., Mitchell, P. J., Nicotra, A. B., McGregor, S., Andrew, N. R., Letnic, M., Kearney, M. R., Wernberg, T., Hutley, L. B., Chambers, L. E., Fletcher, M.-S., Keatley, M. R., Woodward, C. A., Williamson, G., … Bowman, D. M. J. S. (2018). Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 8(7), 579-587. https://doi.org/10.1038/s41558-018-0187-9
Hassall, C. (2014). The ecology and biodiversity of urban ponds. Wiley Interdisciplinary Reviews: Water, 1(2), 187-206. https://doi.org/10.1002/wat2.1014
Havel, J. E., & Shurin, J. B. (2004). Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnology and Oceanography, 49(4), 1229-1238. https://doi.org/10.4319/lo.2004.49.4_part_2.1229
Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x
Hillebrand, H., & Kunze, C. (2020). Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecology Letters, 23(3), 575-585. https://doi.org/10.1111/ele.13457
Hodgson, D., McDonald, J. L., & Hosken, D. J. (2015). What do you mean, ‘resilient’? Trends in Ecology & Evolution, 30(9), 503-506. https://doi.org/10.1016/j.tree.2015.06.010
Horváth, Z., Ptacnik, R., Vad, C. F., & Chase, J. M. (2019). Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecology Letters, 22(6), 1019-1027. https://doi.org/10.1111/ele.13260
Horváth, Z., Vad, C. F., Preiler, C., Birtel, J., Matthews, B., Ptáčníková, R., & Ptáčník, R. (2017). Zooplankton communities and Bythotrephes longimanus in lakes of the montane region of the northern Alps. Inland Waters, 7(1), 3-13. https://doi.org/10.1080/20442041.2017.1294317
Huber, V., Adrian, R., & Gerten, D. (2010). A matter of timing: Heat wave impact on crustacean zooplankton. Freshwater Biology, 55(8), 1769-1779. https://doi.org/10.1111/j.1365-2427.2010.02411.x
Ingrisch, J., & Bahn, M. (2018). Towards a comparable quantification of resilience. Trends in Ecology & Evolution, 33(4), 251-259. https://doi.org/10.1016/j.tree.2018.01.013
IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (pp. 3-32). Cambridge University Press.
Jacquet, C., & Altermatt, F. (2020). The ghost of disturbance past: Long-term effects of pulse disturbances on community biomass and composition. Proceedings of the Royal Society B: Biological Sciences, 287(1930), 20200678. https://doi.org/10.1098/rspb.2020.0678
Jentsch, A., Kreyling, J., & Beierkuhnlein, C. (2007). A new generation of climate-change experiments: Events, not trends. Frontiers in Ecology and the Environment, 5(7), 365-374. https://doi.org/10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2
Jiguet, F., Julliard, R., Thomas, C. D., Dehorter, O., Newson, S. E., & Couvet, D. (2006). Thermal range predicts bird population resilience to extreme high temperatures. Ecology Letters, 9(12), 1321-1330. https://doi.org/10.1111/j.1461-0248.2006.00986.x
Koste, W. (1978). Rotatoria. Die Rädertiere Mitteleuropas. 1 Textband (2nd ed.). Gebrüder Bornträger.
Kratina, P., Greig, H. S., Thompson, P. L., Carvalho-Pereira, T. S., & Shurin, J. B. (2012). Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology, 93(6), 1421-1430. https://doi.org/10.1890/11-1595.1
Kratina, P., Rosenbaum, B., Gallo, B., Horas, E. L., & O'Gorman, E. J. (2022). The combined effects of warming and body size on the stability of predator-prey interactions. Frontiers in Ecology and Evolution, 9, 772078. https://doi.org/10.3389/fevo.2021.772078
Lampert, W., Fleckner, W., Rai, H., & Taylor, B. E. (1986). Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnology and Oceanography, 31(3), 478-490. https://doi.org/10.4319/lo.1986.31.3.0478
Lampert, W., & Muck, P. (1985). Multiple aspects of food limitation in zooplankton communities: The Daphnia-Eudiaptomus example. Ergebnisse der Limnologie/Advances in Limnology, 21, 311-322.
Limberger, R., Pitt, A., Hahn, M. W., & Wickham, S. A. (2019). Spatial insurance in multi-trophic metacommunities. Ecology Letters, 22(11), 1828-1837. https://doi.org/10.1111/ele.13365
López-Urrutia, Á., San Martin, E., Harris, R. P., & Irigoien, X. (2006). Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8739-8744. https://doi.org/10.1073/pnas.0601137103
Loreau, M., Mouquet, N., & Gonzalez, A. (2003). Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12765-12770. https://doi.org/10.1073/pnas.2235465100
Ludovisi, A., Todini, C., Pandolfi, P., & Taticchi, M. I. (2008). Scale patterns of diel distribution of the copepod Cyclops abyssorum Sars in a regulated lake: The relative importance of physical and biological factors. Journal of Plankton Research, 30(5), 495-509. https://doi.org/10.1093/plankt/fbn017
Lund, J. W. G., Kipling, C., & Le Cren, E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11(2), 143-170. https://doi.org/10.1007/BF00007865
McCauley, E. (1984). The estimation of the abundance and biomass of zooplankton in samples. In J. A. Downing & F. H. Rigler (Eds.), A manual on methods for the assessment of secondary productivity in fresh waters (Vol. 17, 2nd ed., pp. 228-265). Blackwell.
McGlinn, D., Xiao, X., McGill, B., May, F., Engel, T., Oliver, C., Blowes, S., Knight, T., Purschke, O., Gotelli, N., & Chase, J. (2021). mobr: Measurement of Biodiversity (2.0.2). https://CRAN.R-project.org/package=mobr
McGlinn, D. J., Xiao, X., May, F., Gotelli, N. J., Engel, T., Blowes, S. A., Knight, T. M., Purschke, O., Chase, J. M., & McGill, B. J. (2019). Measurement of biodiversity (MoB): A method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods in Ecology and Evolution, 10(2), 258-269. https://doi.org/10.1111/2041-210X.13102
O'Connor, M. I., Gilbert, B., & Brown, C. J. (2011). Theoretical predictions for how temperature affects the dynamics of interacting herbivores and plants. The American Naturalist, 178(5), 626-638. https://doi.org/10.1086/662171
O'Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A., & Bruno, J. F. (2009). Warming and resource availability shift food web structure and metabolism. PLoS Biology, 7(8), e1000178. https://doi.org/10.1371/journal.pbio.1000178
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). vegan: Community Ecology Package (2.5-7). https://CRAN.R-project.org/package=vegan
Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., & Wernberg, T. (2018). Longer and more frequent marine heatwaves over the past century. Nature Communications, 9(1), 1324. https://doi.org/10.1038/s41467-018-03732-9
Perkins-Kirkpatrick, S. E., & Lewis, S. C. (2020). Increasing trends in regional heatwaves. Nature Communications, 11(1), 3357. https://doi.org/10.1038/s41467-020-16970-7
Persson, J., Brett, M. T., Vrede, T., & Ravet, J. L. (2007). Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos, 116(7), 1152-1163. https://doi.org/10.1111/j.0030-1299.2007.15639.x
Petchey, O. L., McPhearson, P. T., Casey, T. M., & Morin, P. J. (1999). Environmental warming alters food-web structure and ecosystem function. Nature, 402(6757), 69-72. https://doi.org/10.1038/47023
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., EISPACK authors, Siem Heisterkamp, Van Willigen, B., Ranke, J., & R-Core. (2022). nlme: Linear and Nonlinear Mixed Effects Models (3.1-155). https://CRAN.R-project.org/package=nlme
Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS (1st ed.). Springer-Verlag. https://link.springer.com/book/, https://doi.org/10.1007/b98882
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569(7754), 108-111. https://doi.org/10.1038/s41586-019-1132-4
Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000). Predicting extinction risk in declining species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1456), 1947-1952. https://doi.org/10.1098/rspb.2000.1234
R Core Team. (2020). R: A language and environment for statistical computing (4.0.2). R Foundation for Statistical Computing. https://www.R-project.org/
Rall, B. C., Vucic-Pestic, O., Ehnes, R. B., Emmerson, M., & Brose, U. (2010). Temperature, predator-prey interaction strength and population stability. Global Change Biology, 16(8), 2145-2157. https://doi.org/10.1111/j.1365-2486.2009.02124.x
Reiss, J., & Schmid-Araya, J. M. (2008). Existing in plenty: Abundance, biomass and diversity of ciliates and meiofauna in small streams. Freshwater Biology, 53(4), 652-668. https://doi.org/10.1111/j.1365-2427.2007.01907.x
Romero, G. Q., Gonçalves-Souza, T., Kratina, P., Marino, N. A. C., Petry, W. K., Sobral-Souza, T., & Roslin, T. (2018). Global predation pressure redistribution under future climate change. Nature Climate Change, 8(12), 1087-1091. https://doi.org/10.1038/s41558-018-0347-y
Ross, S. R. P.-J., García Molinos, J., Okuda, A., Johnstone, J., Atsumi, K., Futamura, R., Williams, M. A., Matsuoka, Y., Uchida, J., Kumikawa, S., Sugiyama, H., Kishida, O., & Donohue, I. (2022). Predators mitigate the destabilising effects of heatwaves on multitrophic stream communities. Global Change Biology, 28(2), 403-416. https://doi.org/10.1111/gcb.15956
Sentis, A., Hemptinne, J.-L., & Brodeur, J. (2013). Effects of simulated heat waves on an experimental plant-herbivore-predator food chain. Global Change Biology, 19(3), 833-842. https://doi.org/10.1111/gcb.12094
Shurin, J. B., Clasen, J. L., Greig, H. S., Kratina, P., & Thompson, P. L. (2012). Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1605), 3008-3017. https://doi.org/10.1098/rstb.2012.0243
Slobodkin, L. B. (1959). Energetics in Daphnia pulex populations. Ecology, 40(2), 232-243. https://doi.org/10.2307/1930033
Smale, D. A., & Wernberg, T. (2013). Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B: Biological Sciences, 280(1754), 20122829. https://doi.org/10.1098/rspb.2012.2829
Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., & Moore, P. J. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9(4), 306-312. https://doi.org/10.1038/s41558-019-0412-1
Sommer, U., & Sommer, F. (2006). Cladocerans versus copepods: The cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia, 147(2), 183-194. https://doi.org/10.1007/s00442-005-0320-0
Spivak, A. C., Vanni, M. J., & Mette, E. M. (2011). Moving on up: Can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshwater Biology, 56(2), 279-291. https://doi.org/10.1111/j.1365-2427.2010.02495.x
Stewart, R. I. A., Dossena, M., Bohan, D. A., Jeppesen, E., Kordas, R. L., Ledger, M. E., Meerhoff, M., Moss, B., Mulder, C., Shurin, J. B., Suttle, B., Thompson, R., Trimmer, M., & Woodward, G. (2013). Chapter two-Mesocosm experiments as a tool for ecological climate-change research. In G. Woodward & E. J. O'Gorman (Eds.), Advances in ecological research (Vol. 48, pp. 71-181). Academic Press. https://doi.org/10.1016/B978-0-12-417199-2.00002-1
Stillman, J. H. (2019). Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology, 34(2), 86-100. https://doi.org/10.1152/physiol.00040.2018
Striebel, M., Kirchmaier, L., & Hingsamer, P. (2013). Different mixing techniques in experimental mesocosms-Does mixing affect plankton biomass and community composition? Limnology and Oceanography: Methods, 11(4), 176-186. https://doi.org/10.4319/lom.2013.11.176
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2(9), 686-690. https://doi.org/10.1038/nclimate1539
Symons, C. C., & Arnott, S. E. (2013). Regional zooplankton dispersal provides spatial insurance for ecosystem function. Global Change Biology, 19(5), 1610-1619. https://doi.org/10.1111/gcb.12122
Symons, C. C., & Arnott, S. E. (2014). Timing is everything: Priority effects alter community invasibility after disturbance. Ecology and Evolution, 4(4), 397-407. https://doi.org/10.1002/ece3.940
Thébault, E., & Loreau, M. (2003). Food-web constraints on biodiversity-ecosystem functioning relationships. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 14949-14954. https://doi.org/10.1073/pnas.2434847100
Thompson, P. L., Beisner, B. E., & Gonzalez, A. (2015). Warming induces synchrony and destabilizes experimental pond zooplankton metacommunities. Oikos, 124(9), 1171-1180. https://doi.org/10.1111/oik.01945
Thompson, P. L., & Gonzalez, A. (2017). Dispersal governs the reorganization of ecological networks under environmental change. Nature Ecology & Evolution, 1(6), 1-8. https://doi.org/10.1038/s41559-017-0162
Thompson, P. L., Rayfield, B., & Gonzalez, A. (2017). Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography, 40(1), 98-108. https://doi.org/10.1111/ecog.02558
Thompson, P. L., & Shurin, J. B. (2012). Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change. Journal of Animal Ecology, 81(1), 251-259. https://doi.org/10.1111/j.1365-2656.2011.01908.x
Thompson, R. M., Beardall, J., Beringer, J., Grace, M., & Sardina, P. (2013). Means and extremes: Building variability into community-level climate change experiments. Ecology Letters, 16(6), 799-806. https://doi.org/10.1111/ele.12095
Utermöhl, H. (1958). Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen Internationale Vereinigung für Theoretische Und Angewandte Limnologie, 9, 1-38.
Vadstein, O., Jensen, A., Olsen, Y., & Reinertsen, H. (1988). Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnology and Oceanography, 33, 489-503. https://doi.org/10.4319/lo.1988.33.4.0489
Vanschoenwinkel, B., Gielen, S., Seaman, M., & Brendonck, L. (2008). Any way the wind blows-Frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos, 117(1), 125-134. https://doi.org/10.1111/j.2007.0030-1299.16349.x
Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G., McCann, K. S., Savage, V., Tunney, T. D., & O'Connor, M. I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281(1779), 20132612. https://doi.org/10.1098/rspb.2013.2612
Velthuis, M., de Senerpont Domis, L. N., Frenken, T., Stephan, S., Kazanjian, G., Aben, R., Hilt, S., Kosten, S., van Donk, E., & Van de Waal, D. B. (2017). Warming advances top-down control and reduces producer biomass in a freshwater plankton community. Ecosphere, 8(1), e01651. https://doi.org/10.1002/ecs2.1651
Villnäs, A., Norkko, J., Hietanen, S., Josefson, A. B., Lukkari, K., & Norkko, A. (2013). The role of recurrent disturbances for ecosystem multifunctionality. Ecology, 94(10), 2275-2287. https://doi.org/10.1890/12-1716.1
Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., de Bettignies, T., Bennett, S., & Rousseaux, C. S. (2013). An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3(1), 78-82. https://doi.org/10.1038/nclimate1627
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., Dunnington, D., & RStudio. (2021). ggplot2: Create elegant data visualisations using the grammar of graphics (3.3.5). https://CRAN.R-project.org/package=ggplot2
Woodward, G., Bonada, N., Brown, L. E., Death, R. G., Durance, I., Gray, C., Hladyz, S., Ledger, M. E., Milner, A. M., Ormerod, S. J., Thompson, R. M., & Pawar, S. (2016). The effects of climatic fluctuations and extreme events on running water ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1694), 20150274. https://doi.org/10.1098/rstb.2015.0274
Woolway, R. I., Jennings, E., Shatwell, T., Golub, M., Pierson, D. C., & Maberly, S. C. (2021). Lake heatwaves under climate change. Nature, 589(7842), 402-407. https://doi.org/10.1038/s41586-020-03119-1
Yampolsky, L. Y., Zeng, E., Lopez, J., Williams, P. J., Dick, K. B., Colbourne, J. K., & Pfrender, M. E. (2014). Functional genomics of acclimation and adaptation in response to thermal stress in Daphnia. BMC Genomics, 15(1), 859. https://doi.org/10.1186/1471-2164-15-859
Zhang, H., Urrutia-Cordero, P., He, L., Geng, H., Chaguaceda, F., Xu, J., & Hansson, L.-A. (2018). Life-history traits buffer against heat wave effects on predator-prey dynamics in zooplankton. Global Change Biology, 24(10), 4747-4757. https://doi.org/10.1111/gcb.14371
Zhang, P., van Leeuwen, C. H. A., Bogers, D., Poelman, M., Xu, J., & Bakker, E. S. (2020). Ectothermic omnivores increase herbivory in response to rising temperature. Oikos, 129(7), 1028-1039. https://doi.org/10.1111/oik.07082

Auteurs

Csaba F Vad (CF)

WasserCluster Lunz-Biologische Station, Lunz am See, Austria.
Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary.
National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Budapest, Hungary.

Anett Hanny-Endrédi (A)

Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary.

Pavel Kratina (P)

School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.

András Abonyi (A)

WasserCluster Lunz-Biologische Station, Lunz am See, Austria.
Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary.

Ekaterina Mironova (E)

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia.

David S Murray (DS)

Collaborative Centre for Sustainable Use of the Seas (CCSUS), School of Biological Sciences, University of East Anglia, Norfolk, UK.
The Centre for Environmental, Fisheries and Aquaculture Science (Cefas), Suffolk, Lowestoft, UK.

Larysa Samchyshyna (L)

Institute of Fisheries, National Academy of Agrarian Sciences, Kyiv, Ukraine.
Institute of Fisheries and Marine Ecology, Berdiansk, Ukraine.

Ioannis Tsakalakis (I)

Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.

Evangelia Smeti (E)

Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece.

Sofie Spatharis (S)

School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK.

Hanrong Tan (H)

School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.

Christian Preiler (C)

WasserCluster Lunz-Biologische Station, Lunz am See, Austria.

Adam Petrusek (A)

Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.

Mia M Bengtsson (MM)

Institute of Microbiology, University of Greifswald, Greifswald, Germany.

Robert Ptacnik (R)

WasserCluster Lunz-Biologische Station, Lunz am See, Austria.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH