From primordial clocks to circadian oscillators.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
04 2023
Historique:
received: 29 05 2022
accepted: 13 02 2023
medline: 7 4 2023
pubmed: 24 3 2023
entrez: 23 3 2023
Statut: ppublish

Résumé

Circadian rhythms play an essential part in many biological processes, and only three prokaryotic proteins are required to constitute a true post-translational circadian oscillator

Identifiants

pubmed: 36949197
doi: 10.1038/s41586-023-05836-9
pii: 10.1038/s41586-023-05836-9
pmc: PMC10076222
doi:

Substances chimiques

Bacterial Proteins 0
Adenosine Triphosphate 8L70Q75FXE
Adenosine Diphosphate 61D2G4IYVH

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

183-189

Subventions

Organisme : NIGMS NIH HHS
ID : P30 GM124169-01
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Ishiura, M. et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281, 1519–1523 (1998).
pubmed: 9727980 doi: 10.1126/science.281.5382.1519
Dvornyk, V., Vinogradova, O. & Nevo, E. Origin and evolution of circadian clock genes in prokaryotes. Proc. Natl Acad. Sci. USA 100, 2495–2500 (2003).
pubmed: 12604787 pmcid: 151369 doi: 10.1073/pnas.0130099100
Cohen, S. E. & Golden, S. S. Circadian rhythms in cyanobacteria. Microbiol. Mol. Biol. Rev. 79, 373–385 (2015).
pubmed: 26335718 pmcid: 4557074 doi: 10.1128/MMBR.00036-15
Golden, S. S. Principles of rhythmicity emerging from cyanobacteria. Eur. J. Neurosci. 51, 13–18 (2020).
pubmed: 31087440 doi: 10.1111/ejn.14434
Partch, C. L. Orchestration of circadian timing by macromolecular protein assemblies. J. Mol. Biol. 432, 3426–3448 (2020).
pubmed: 31945377 pmcid: 8694095 doi: 10.1016/j.jmb.2019.12.046
Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S. & O’Shea, E. K. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318, 809–812 (2007).
pubmed: 17916691 pmcid: 2427396 doi: 10.1126/science.1148596
Holtzendorff, J. et al. Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J. Biol. Rhythms 23, 187–199 (2008).
pubmed: 18487411 doi: 10.1177/0748730408316040
Axmann, I. M. et al. Biochemical evidence for a timing mechanism in Prochlorococcus. J. Bacteriol. 191, 5342–5347 (2009).
pubmed: 19502405 pmcid: 2725622 doi: 10.1128/JB.00419-09
Ma, P., Mori, T., Zhao, C., Thiel, T. & Johnson, C. H. Evolution of KaiC-dependent timekeepers: a proto-circadian timing mechanism confers adaptive fitness in the purple bacterium Rhodopseudomonas palustris. PLoS Genet. 12, e1005922 (2016).
pubmed: 26982486 pmcid: 4794148 doi: 10.1371/journal.pgen.1005922
Dvornyk, V. & Knudsen, B. Functional divergence of the circadian clock proteins in prokaryotes. Genetica 124, 247–254 (2005).
pubmed: 16134337 doi: 10.1007/s10709-005-3146-0
Min, H., Guo, H. & Xiong, J. Rhythmic gene expression in a purple photosynthetic bacterium, Rhodobacter sphaeroides. FEBS Lett. 579, 808–812 (2005).
pubmed: 15670851 doi: 10.1016/j.febslet.2005.01.003
Carter, A. P. et al. Structure and functional role of dynein’s microtubule-binding domain. Science 322, 1691–1695 (2008).
pubmed: 19074350 pmcid: 2663340 doi: 10.1126/science.1164424
Schmelling, N. M. et al. Minimal tool set for a prokaryotic circadian clock. BMC Evol. Biol. 17, 169 (2017).
pubmed: 28732467 pmcid: 5520375 doi: 10.1186/s12862-017-0999-7
Aoki, S. & Onai, K. in Bacterial Circadian Programs (eds Mackey S. R. Ditty J. L. & Johnson C. H.) 259–282 (Springer, 2009).
Wiegard, A. et al. Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp PCC 6803 suggests their functional divergence. Microbiology 159, 948–958 (2013).
pubmed: 23449916 doi: 10.1099/mic.0.065425-0
Pattanayek, R. et al. Analysis of KaiA–KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. EMBO J. 25, 2017–2028 (2006).
pubmed: 16628225 pmcid: 1456936 doi: 10.1038/sj.emboj.7601086
Nishiwaki-Ohkawa, T., Kitayama, Y., Ochiai, E. & Kondo, T. Exchange of ADP with ATP in the CII ATPase domain promotes autophosphorylation of cyanobacterial clock protein KaiC. Proc. Natl Acad. Sci. USA 111, 4455–4460 (2014).
pubmed: 24616498 pmcid: 3970490 doi: 10.1073/pnas.1319353111
Kim, Y. I., Dong, G., Carruthers, C. W. Jr., Golden, S. S. & LiWang, A. The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. Proc. Natl Acad. Sci. USA 105, 12825–12830 (2008).
pubmed: 18728181 pmcid: 2529086 doi: 10.1073/pnas.0800526105
Swan, J. A. et al. Coupling of distant ATPase domains in the circadian clock protein KaiC. Nat. Struct. Mol. Biol. 29, 759–766 (2022).
pubmed: 35864165 pmcid: 9495280 doi: 10.1038/s41594-022-00803-w
Egli, M. et al. Loop–loop interactions regulate KaiA-stimulated KaiC phosphorylation in the cyanobacterial KaiABC circadian clock. Biochemistry 52, 1208–1220 (2013).
pubmed: 23351065 doi: 10.1021/bi301691a
Hayashi, F. et al. ATP-induced hexameric ring structure of the cyanobacterial circadian clock protein KaiC. Genes Cells 8, 287–296 (2003).
pubmed: 12622725 doi: 10.1046/j.1365-2443.2003.00633.x
Nishiwaki, T. et al. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. Proc. Natl Acad. Sci. USA 101, 13927–13932 (2004).
pubmed: 15347812 pmcid: 518855 doi: 10.1073/pnas.0403906101
Xu, Y. et al. Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses. Proc. Natl Acad. Sci. USA 101, 13933–13938 (2004).
pubmed: 15347809 pmcid: 518856 doi: 10.1073/pnas.0404768101
Kitayama, Y., Iwasaki, H., Nishiwaki, T. & Kondo, T. KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. EMBO J. 22, 2127–2134 (2003).
pubmed: 12727879 pmcid: 156084 doi: 10.1093/emboj/cdg212
Chang, Y. G. et al. Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science 349, 324–328 (2015).
pubmed: 26113641 pmcid: 4506712 doi: 10.1126/science.1260031
Tseng, R. et al. Structural basis of the day–night transition in a bacterial circadian clock. Science 355, 1174–1180 (2017).
pubmed: 28302851 pmcid: 5441561 doi: 10.1126/science.aag2516
Abee, T., Hellingwerf, K. J. & Konings, W. N. Effects of potassium ions on proton motive force in Rhodobacter sphaeroides. J. Bacteriol. 170, 5647–5653 (1988).
pubmed: 3263963 pmcid: 211664 doi: 10.1128/jb.170.12.5647-5653.1988
Terauchi, K. et al. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc. Natl Acad. Sci. USA 104, 16377–16381 (2007).
pubmed: 17901204 pmcid: 2042214 doi: 10.1073/pnas.0706292104
Nishiwaki, T. & Kondo, T. Circadian autodephosphorylation of cyanobacterial clock protein KaiC occurs via formation of ATP as intermediate. J. Biol. Chem. 287, 18030–18035 (2012).
pubmed: 22493509 pmcid: 3365771 doi: 10.1074/jbc.M112.350660
Phong, C., Markson, J. S., Wilhoite, C. M. & Rust, M. J. Robust and tunable circadian rhythms from differentially sensitive catalytic domains. Proc. Natl Acad. Sci. USA 110, 1124–1129 (2013).
pubmed: 23277568 doi: 10.1073/pnas.1212113110
Murakami, R. et al. Cooperative binding of KaiB to the KaiC hexamer ensures accurate circadian clock oscillation in cyanobacteria. Int. J. Mol. Sci. 20, 4550 (2019).
pubmed: 31540310 pmcid: 6769508 doi: 10.3390/ijms20184550
Snijder, J. et al. Insight into cyanobacterial circadian timing from structural details of the KaiB–KaiC interaction. Proc. Natl Acad. Sci. USA 111, 1379–1384 (2014).
pubmed: 24474762 pmcid: 3910634 doi: 10.1073/pnas.1314326111
Rust, M. J., Golden, S. S. & O’Shea, E. K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331, 220–223 (2011).
pubmed: 21233390 pmcid: 3309039 doi: 10.1126/science.1197243
Truebestein, L. & Leonard, T. A. Coiled-coils: the long and short of it. Bioessays 38, 903–916 (2016).
pubmed: 27492088 pmcid: 5082667 doi: 10.1002/bies.201600062
Liu, J. & Rost, B. Comparing function and structure between entire proteomes. Protein Sci. 10, 1970–1979 (2001).
pubmed: 11567088 pmcid: 2374214 doi: 10.1110/ps.10101
Pattanayek, R. et al. Visualizing a circadian clock protein: crystal structure of KaiC and functional insights. Mol. Cell 15, 375–388 (2004).
pubmed: 15304218 doi: 10.1016/j.molcel.2004.07.013
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537 doi: 10.1016/j.jmb.2007.05.022
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712 doi: 10.1016/S0022-2836(05)80360-2
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
pubmed: 12136088 pmcid: 135756 doi: 10.1093/nar/gkf436
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690 pmcid: 3603318 doi: 10.1093/molbev/mst010
Katoh, K. & Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899–1900 (2010).
pubmed: 20427515 pmcid: 2905546 doi: 10.1093/bioinformatics/btq224
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
pubmed: 24451623 pmcid: 3998144 doi: 10.1093/bioinformatics/btu033
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
pubmed: 23060610 pmcid: 3516142 doi: 10.1093/bioinformatics/bts565
Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).
pubmed: 15661851 pmcid: 548345 doi: 10.1093/nar/gki198
Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).
pubmed: 18367465 doi: 10.1093/molbev/msn067
Soubrier, J. et al. The influence of rate heterogeneity among sites on the time dependence of molecular rates. Mol. Biol. Evol. 29, 3345–3358 (2012).
pubmed: 22617951 doi: 10.1093/molbev/mss140
Yang, Z. A space–time process model for the evolution of DNA sequences. Genetics 139, 993–1005 (1995).
pubmed: 7713447 pmcid: 1206396 doi: 10.1093/genetics/139.2.993
Anisimova, M., Gil, M., Dufayard, J. F., Dessimoz, C. & Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011).
pubmed: 21540409 pmcid: 3158332 doi: 10.1093/sysbio/syr041
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
pubmed: 20525638 doi: 10.1093/sysbio/syq010
Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
pubmed: 23418397 pmcid: 3670741 doi: 10.1093/molbev/mst024
Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).
Bunkoczi, G. et al. Phaser.MRage: automated molecular replacement. Acta Crystallogr. D 69, 2276–2286 (2013).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472 doi: 10.1107/S0021889807021206
Lebedev, A. A. & Isupov, M. N. Space-group and origin ambiguity in macromolecular structures with pseudo-symmetry and its treatment with the program Zanuda. Acta Crystallogr. D 70, 2430–2443 (2014).
Kowiel, M., Jaskolski, M. & Dauter, Z. ACHESYM: an algorithm and server for standardized placement of macromolecular models in the unit cell. Acta Crystallogr. D 70, 3290–3298 (2014).
Szczepaniak, K., Bukala, A., da Silva Neto, A. M., Ludwiczak, J. & Dunin-Horkawicz, S. A library of coiled-coil domains: from regular bundles to peculiar twists. Bioinformatics 36, 5368–5376 (2020).
pubmed: 33325494 pmcid: 8016460 doi: 10.1093/bioinformatics/btaa1041
The PyMOL Molecular Graphics System, version 2.4 (Schrödinger, 2020).
Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).
pubmed: 23093919 pmcid: 3475669 doi: 10.1371/journal.pcbi.1002708
Kagawa, R., Montgomery, M. G., Braig, K., Leslie, A. G. & Walker, J. E. The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. EMBO J. 23, 2734–2744 (2004).
pubmed: 15229653 pmcid: 514953 doi: 10.1038/sj.emboj.7600293
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife https://doi.org/10.7554/eLife.35383  (2018).
Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).
pubmed: 10692345 pmcid: 1300758 doi: 10.1016/S0006-3495(00)76713-0
Johnson, K. A. Fitting enzyme kinetic data with KinTek Global Kinetic Explorer. Methods Enzymol. 467, 601–626 (2009).
pubmed: 19897109 doi: 10.1016/S0076-6879(09)67023-3
Johnson, K. A., Simpson, Z. B. & Blom, T. Global Kinetic Explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 387, 20–29 (2009).
pubmed: 19154726 doi: 10.1016/j.ab.2008.12.024
Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (K
pubmed: 4202581 doi: 10.1016/0006-2952(73)90196-2

Auteurs

Warintra Pitsawong (W)

Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA.
Biomolecular Discovery, Relay Therapeutics, Cambridge, MA, USA.

Ricardo A P Pádua (RAP)

Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA.

Timothy Grant (T)

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Madison, WI, USA.
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.

Marc Hoemberger (M)

Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA.
Treeline Biosciences, Watertown, MA, USA.

Renee Otten (R)

Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA.
Treeline Biosciences, Watertown, MA, USA.

Niels Bradshaw (N)

Department of Biochemistry, Brandeis University, Waltham, MA, USA.

Nikolaus Grigorieff (N)

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Howard Hughes Medical Institute, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.

Dorothee Kern (D)

Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA. dkern@brandeis.edu.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Classifications MeSH