From primordial clocks to circadian oscillators.
Bacterial Proteins
/ chemistry
Circadian Clocks
Circadian Rhythm
Phosphorylation
Rhodobacter sphaeroides
/ chemistry
Crystallography, X-Ray
Cryoelectron Microscopy
Adenosine Triphosphate
/ metabolism
Adenosine Diphosphate
/ metabolism
Kinetics
Protein Folding
Protein Conformation
Allosteric Regulation
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
29
05
2022
accepted:
13
02
2023
medline:
7
4
2023
pubmed:
24
3
2023
entrez:
23
3
2023
Statut:
ppublish
Résumé
Circadian rhythms play an essential part in many biological processes, and only three prokaryotic proteins are required to constitute a true post-translational circadian oscillator
Identifiants
pubmed: 36949197
doi: 10.1038/s41586-023-05836-9
pii: 10.1038/s41586-023-05836-9
pmc: PMC10076222
doi:
Substances chimiques
Bacterial Proteins
0
Adenosine Triphosphate
8L70Q75FXE
Adenosine Diphosphate
61D2G4IYVH
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
183-189Subventions
Organisme : NIGMS NIH HHS
ID : P30 GM124169-01
Pays : United States
Informations de copyright
© 2023. The Author(s).
Références
Ishiura, M. et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281, 1519–1523 (1998).
pubmed: 9727980
doi: 10.1126/science.281.5382.1519
Dvornyk, V., Vinogradova, O. & Nevo, E. Origin and evolution of circadian clock genes in prokaryotes. Proc. Natl Acad. Sci. USA 100, 2495–2500 (2003).
pubmed: 12604787
pmcid: 151369
doi: 10.1073/pnas.0130099100
Cohen, S. E. & Golden, S. S. Circadian rhythms in cyanobacteria. Microbiol. Mol. Biol. Rev. 79, 373–385 (2015).
pubmed: 26335718
pmcid: 4557074
doi: 10.1128/MMBR.00036-15
Golden, S. S. Principles of rhythmicity emerging from cyanobacteria. Eur. J. Neurosci. 51, 13–18 (2020).
pubmed: 31087440
doi: 10.1111/ejn.14434
Partch, C. L. Orchestration of circadian timing by macromolecular protein assemblies. J. Mol. Biol. 432, 3426–3448 (2020).
pubmed: 31945377
pmcid: 8694095
doi: 10.1016/j.jmb.2019.12.046
Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S. & O’Shea, E. K. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318, 809–812 (2007).
pubmed: 17916691
pmcid: 2427396
doi: 10.1126/science.1148596
Holtzendorff, J. et al. Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J. Biol. Rhythms 23, 187–199 (2008).
pubmed: 18487411
doi: 10.1177/0748730408316040
Axmann, I. M. et al. Biochemical evidence for a timing mechanism in Prochlorococcus. J. Bacteriol. 191, 5342–5347 (2009).
pubmed: 19502405
pmcid: 2725622
doi: 10.1128/JB.00419-09
Ma, P., Mori, T., Zhao, C., Thiel, T. & Johnson, C. H. Evolution of KaiC-dependent timekeepers: a proto-circadian timing mechanism confers adaptive fitness in the purple bacterium Rhodopseudomonas palustris. PLoS Genet. 12, e1005922 (2016).
pubmed: 26982486
pmcid: 4794148
doi: 10.1371/journal.pgen.1005922
Dvornyk, V. & Knudsen, B. Functional divergence of the circadian clock proteins in prokaryotes. Genetica 124, 247–254 (2005).
pubmed: 16134337
doi: 10.1007/s10709-005-3146-0
Min, H., Guo, H. & Xiong, J. Rhythmic gene expression in a purple photosynthetic bacterium, Rhodobacter sphaeroides. FEBS Lett. 579, 808–812 (2005).
pubmed: 15670851
doi: 10.1016/j.febslet.2005.01.003
Carter, A. P. et al. Structure and functional role of dynein’s microtubule-binding domain. Science 322, 1691–1695 (2008).
pubmed: 19074350
pmcid: 2663340
doi: 10.1126/science.1164424
Schmelling, N. M. et al. Minimal tool set for a prokaryotic circadian clock. BMC Evol. Biol. 17, 169 (2017).
pubmed: 28732467
pmcid: 5520375
doi: 10.1186/s12862-017-0999-7
Aoki, S. & Onai, K. in Bacterial Circadian Programs (eds Mackey S. R. Ditty J. L. & Johnson C. H.) 259–282 (Springer, 2009).
Wiegard, A. et al. Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp PCC 6803 suggests their functional divergence. Microbiology 159, 948–958 (2013).
pubmed: 23449916
doi: 10.1099/mic.0.065425-0
Pattanayek, R. et al. Analysis of KaiA–KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. EMBO J. 25, 2017–2028 (2006).
pubmed: 16628225
pmcid: 1456936
doi: 10.1038/sj.emboj.7601086
Nishiwaki-Ohkawa, T., Kitayama, Y., Ochiai, E. & Kondo, T. Exchange of ADP with ATP in the CII ATPase domain promotes autophosphorylation of cyanobacterial clock protein KaiC. Proc. Natl Acad. Sci. USA 111, 4455–4460 (2014).
pubmed: 24616498
pmcid: 3970490
doi: 10.1073/pnas.1319353111
Kim, Y. I., Dong, G., Carruthers, C. W. Jr., Golden, S. S. & LiWang, A. The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. Proc. Natl Acad. Sci. USA 105, 12825–12830 (2008).
pubmed: 18728181
pmcid: 2529086
doi: 10.1073/pnas.0800526105
Swan, J. A. et al. Coupling of distant ATPase domains in the circadian clock protein KaiC. Nat. Struct. Mol. Biol. 29, 759–766 (2022).
pubmed: 35864165
pmcid: 9495280
doi: 10.1038/s41594-022-00803-w
Egli, M. et al. Loop–loop interactions regulate KaiA-stimulated KaiC phosphorylation in the cyanobacterial KaiABC circadian clock. Biochemistry 52, 1208–1220 (2013).
pubmed: 23351065
doi: 10.1021/bi301691a
Hayashi, F. et al. ATP-induced hexameric ring structure of the cyanobacterial circadian clock protein KaiC. Genes Cells 8, 287–296 (2003).
pubmed: 12622725
doi: 10.1046/j.1365-2443.2003.00633.x
Nishiwaki, T. et al. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. Proc. Natl Acad. Sci. USA 101, 13927–13932 (2004).
pubmed: 15347812
pmcid: 518855
doi: 10.1073/pnas.0403906101
Xu, Y. et al. Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses. Proc. Natl Acad. Sci. USA 101, 13933–13938 (2004).
pubmed: 15347809
pmcid: 518856
doi: 10.1073/pnas.0404768101
Kitayama, Y., Iwasaki, H., Nishiwaki, T. & Kondo, T. KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. EMBO J. 22, 2127–2134 (2003).
pubmed: 12727879
pmcid: 156084
doi: 10.1093/emboj/cdg212
Chang, Y. G. et al. Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science 349, 324–328 (2015).
pubmed: 26113641
pmcid: 4506712
doi: 10.1126/science.1260031
Tseng, R. et al. Structural basis of the day–night transition in a bacterial circadian clock. Science 355, 1174–1180 (2017).
pubmed: 28302851
pmcid: 5441561
doi: 10.1126/science.aag2516
Abee, T., Hellingwerf, K. J. & Konings, W. N. Effects of potassium ions on proton motive force in Rhodobacter sphaeroides. J. Bacteriol. 170, 5647–5653 (1988).
pubmed: 3263963
pmcid: 211664
doi: 10.1128/jb.170.12.5647-5653.1988
Terauchi, K. et al. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc. Natl Acad. Sci. USA 104, 16377–16381 (2007).
pubmed: 17901204
pmcid: 2042214
doi: 10.1073/pnas.0706292104
Nishiwaki, T. & Kondo, T. Circadian autodephosphorylation of cyanobacterial clock protein KaiC occurs via formation of ATP as intermediate. J. Biol. Chem. 287, 18030–18035 (2012).
pubmed: 22493509
pmcid: 3365771
doi: 10.1074/jbc.M112.350660
Phong, C., Markson, J. S., Wilhoite, C. M. & Rust, M. J. Robust and tunable circadian rhythms from differentially sensitive catalytic domains. Proc. Natl Acad. Sci. USA 110, 1124–1129 (2013).
pubmed: 23277568
doi: 10.1073/pnas.1212113110
Murakami, R. et al. Cooperative binding of KaiB to the KaiC hexamer ensures accurate circadian clock oscillation in cyanobacteria. Int. J. Mol. Sci. 20, 4550 (2019).
pubmed: 31540310
pmcid: 6769508
doi: 10.3390/ijms20184550
Snijder, J. et al. Insight into cyanobacterial circadian timing from structural details of the KaiB–KaiC interaction. Proc. Natl Acad. Sci. USA 111, 1379–1384 (2014).
pubmed: 24474762
pmcid: 3910634
doi: 10.1073/pnas.1314326111
Rust, M. J., Golden, S. S. & O’Shea, E. K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331, 220–223 (2011).
pubmed: 21233390
pmcid: 3309039
doi: 10.1126/science.1197243
Truebestein, L. & Leonard, T. A. Coiled-coils: the long and short of it. Bioessays 38, 903–916 (2016).
pubmed: 27492088
pmcid: 5082667
doi: 10.1002/bies.201600062
Liu, J. & Rost, B. Comparing function and structure between entire proteomes. Protein Sci. 10, 1970–1979 (2001).
pubmed: 11567088
pmcid: 2374214
doi: 10.1110/ps.10101
Pattanayek, R. et al. Visualizing a circadian clock protein: crystal structure of KaiC and functional insights. Mol. Cell 15, 375–388 (2004).
pubmed: 15304218
doi: 10.1016/j.molcel.2004.07.013
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537
doi: 10.1016/j.jmb.2007.05.022
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712
doi: 10.1016/S0022-2836(05)80360-2
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
pubmed: 12136088
pmcid: 135756
doi: 10.1093/nar/gkf436
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690
pmcid: 3603318
doi: 10.1093/molbev/mst010
Katoh, K. & Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899–1900 (2010).
pubmed: 20427515
pmcid: 2905546
doi: 10.1093/bioinformatics/btq224
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
pubmed: 24451623
pmcid: 3998144
doi: 10.1093/bioinformatics/btu033
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
pubmed: 23060610
pmcid: 3516142
doi: 10.1093/bioinformatics/bts565
Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).
pubmed: 15661851
pmcid: 548345
doi: 10.1093/nar/gki198
Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).
pubmed: 18367465
doi: 10.1093/molbev/msn067
Soubrier, J. et al. The influence of rate heterogeneity among sites on the time dependence of molecular rates. Mol. Biol. Evol. 29, 3345–3358 (2012).
pubmed: 22617951
doi: 10.1093/molbev/mss140
Yang, Z. A space–time process model for the evolution of DNA sequences. Genetics 139, 993–1005 (1995).
pubmed: 7713447
pmcid: 1206396
doi: 10.1093/genetics/139.2.993
Anisimova, M., Gil, M., Dufayard, J. F., Dessimoz, C. & Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011).
pubmed: 21540409
pmcid: 3158332
doi: 10.1093/sysbio/syr041
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
pubmed: 20525638
doi: 10.1093/sysbio/syq010
Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
pubmed: 23418397
pmcid: 3670741
doi: 10.1093/molbev/mst024
Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).
Bunkoczi, G. et al. Phaser.MRage: automated molecular replacement. Acta Crystallogr. D 69, 2276–2286 (2013).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840
pmcid: 2483472
doi: 10.1107/S0021889807021206
Lebedev, A. A. & Isupov, M. N. Space-group and origin ambiguity in macromolecular structures with pseudo-symmetry and its treatment with the program Zanuda. Acta Crystallogr. D 70, 2430–2443 (2014).
Kowiel, M., Jaskolski, M. & Dauter, Z. ACHESYM: an algorithm and server for standardized placement of macromolecular models in the unit cell. Acta Crystallogr. D 70, 3290–3298 (2014).
Szczepaniak, K., Bukala, A., da Silva Neto, A. M., Ludwiczak, J. & Dunin-Horkawicz, S. A library of coiled-coil domains: from regular bundles to peculiar twists. Bioinformatics 36, 5368–5376 (2020).
pubmed: 33325494
pmcid: 8016460
doi: 10.1093/bioinformatics/btaa1041
The PyMOL Molecular Graphics System, version 2.4 (Schrödinger, 2020).
Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).
pubmed: 23093919
pmcid: 3475669
doi: 10.1371/journal.pcbi.1002708
Kagawa, R., Montgomery, M. G., Braig, K., Leslie, A. G. & Walker, J. E. The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. EMBO J. 23, 2734–2744 (2004).
pubmed: 15229653
pmcid: 514953
doi: 10.1038/sj.emboj.7600293
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563
doi: 10.1016/j.jsb.2005.07.007
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife https://doi.org/10.7554/eLife.35383 (2018).
Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).
pubmed: 10692345
pmcid: 1300758
doi: 10.1016/S0006-3495(00)76713-0
Johnson, K. A. Fitting enzyme kinetic data with KinTek Global Kinetic Explorer. Methods Enzymol. 467, 601–626 (2009).
pubmed: 19897109
doi: 10.1016/S0076-6879(09)67023-3
Johnson, K. A., Simpson, Z. B. & Blom, T. Global Kinetic Explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 387, 20–29 (2009).
pubmed: 19154726
doi: 10.1016/j.ab.2008.12.024
Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (K
pubmed: 4202581
doi: 10.1016/0006-2952(73)90196-2