Microfluidic Generation of Near-Infrared Photothermal Vitexin/ICG Liposome with Amplified Photodynamic Therapy.
indocyanine green
lab-on-a-chip
liposome
near-infrared ray
vitexin
Journal
AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111
Informations de publication
Date de publication:
22 Mar 2023
22 Mar 2023
Historique:
received:
13
12
2022
accepted:
12
02
2023
entrez:
23
3
2023
pubmed:
24
3
2023
medline:
25
3
2023
Statut:
epublish
Résumé
Glioma, in which a malignant tumor cell occurs in neural mesenchymal cells, has a rapid progression and poor prognosis, which is still far from desirable in clinical treatments. We developed a lab-on-a-chip (LOC) device for the rapid and efficient preparation of vitexin/indocyanine green (ICG) liposomes. Vitexin could be released from liposome to kill cancer cell, which can potentially improve the glioma therapeutic effect and reduce the treatment time through synergistic photodynamic/photothermal therapies (PDT/PTT). The vitexin/ICG liposome was fabricated via LOC and its physicochemical property and release in vitro were evaluated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and live/dead staining were used to examine the enhanced antitumor effect of vitexin/ICG liposome in cooperation with PDT/PTT, while the related mechanism was explored by flow cytometry and western blot. The results were as follows: (1) The prepared vitexin/ICG liposome was smaller in size, homogenous in particle size distribution with significant low polydispersity index (PDI), and enhanced cumulative release in vitro. (2) We found that the formulated liposome presented strong cancer cell inhibition and suppression of its migration in a dose-dependent manner. (3) Further mechanistic studies showed that liposome combined with near-infrared irradiation could significantly upregulate levels of B cell lymphoma 2-associated X (Bax) protein and decrease B cell lymphoma 2 (Bcl-2) at protein levels. The vitexin/ICG liposomes prepared based on a simple LOC platform can effectively enhance the solubility of insoluble drugs, and the combined effect of PTT/PDT can effectively increase their antitumor effect, which provides a simple and valid method for the clinical translation of liposomes.
Identifiants
pubmed: 36949351
doi: 10.1208/s12249-023-02539-2
pii: 10.1208/s12249-023-02539-2
doi:
Substances chimiques
Indocyanine Green
IX6J1063HV
Liposomes
0
vitexin
9VP70K75OK
Proto-Oncogene Proteins c-bcl-2
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
82Subventions
Organisme : National Key R&D Program of China
ID : 2018YFE0208600
Organisme : Key planning social development projects of Zhenjiang in Jiangsu Province
ID : SH2021024
Organisme : National Natural Science Foundation of China
ID : 81720108030
Organisme : National Natural Science Foundation of China
ID : 8217131836
Organisme : Natural Science Foundation of the Higher Education Institutions of Jiangsu Province
ID : 18KJB360001
Organisme : Natural Science Foundation of Jiangsu Province
ID : Natural Science Foundation of Jiangsu Province
Organisme : Postdoctoral Research Fund of Jiangsu Province in 2021 category A
ID : 2021K010A
Informations de copyright
© 2023. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.
Références
Li H, Liu Y, Jin H, Liu S, Fang S, Wang C, et al. Separation of vitexin-4″-O-glucoside and vitexin-2″-O-rhamnoside from hawthorn leaves extracts using macroporous resins. J Chromatogr B Anal Technol Biomed Life Sci. 2015;1007:23–9. https://doi.org/10.1016/j.jchromb.2015.10.043 .
doi: 10.1016/j.jchromb.2015.10.043
Vlaisavljevic S, Sibul F, Sinka I, Zupko I, Ocsovszki I, Jovanovic-Santa S. Chemical composition, antioxidant and anticancer activity of licorice from Fruska Gora locality. Ind Crops Prod. 2018;112:217–24. https://doi.org/10.1016/j.indcrop.2017.11.050 .
doi: 10.1016/j.indcrop.2017.11.050
Yu X, Huang J, Xu D, Xie Z, Xie Z, Xu X. Isolation and purification of orientin and vitexin from Trollius chinensis Bunge by high-speed counter-current chromatography. Nat Prod Res. 2014;28(9):674–6. https://doi.org/10.1080/14786419.2014.891111 .
doi: 10.1080/14786419.2014.891111
pubmed: 24650293
Yuan M, Wang R, Liu L, Yang X, Peng Y, Sun Z. Contribution evaluation of the floral parts to orientin and vitexin concentrations in the flowers of Trollius chinensis. Chin J Nat Med. 2013;11(6):699–704. https://doi.org/10.1016/s1875-5364(13)60082-5 .
doi: 10.1016/s1875-5364(13)60082-5
pubmed: 24345513
Fu Y, Zu Y, Liu W, Hou C, Chen L, Li S, et al. Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporous resins. J Chromatogr A. 2007;1139(2):206–13. https://doi.org/10.1016/j.chroma.2006.11.015 .
doi: 10.1016/j.chroma.2006.11.015
pubmed: 17140590
Kim J, Lee B, Kim J, Sim G, Lee D, Lee K, et al. The isolation and antioxidative effects of vitexin from Acer palmatum. Arch Pharm Res. 2005;28(2):195–202. https://doi.org/10.1007/bf02977715 .
doi: 10.1007/bf02977715
pubmed: 15789751
Kassuya RM, Dos Santos E, Bosso FH, Pedroso TF, Marinho JVN, Salvador MJ, et al. Anti-inflammatory properties of ethanolic extract and 2’’-O-beta-D-glucopyranosyl-vitexin obtained from Alternanthera tenella colla whole plant. Inflammation. 2021;44(4):1540–52. https://doi.org/10.1007/s10753-021-01438-7 .
doi: 10.1007/s10753-021-01438-7
pubmed: 33646486
Li XS, Tang XY, Su W, Li X. Vitexin protects melanocytes from oxidative stress via activating MAPK-Nrf2/ARE pathway. Immunopharmacol Immunotoxicol. 2020;42(6):594–603. https://doi.org/10.1080/08923973.2020.1835952 .
doi: 10.1080/08923973.2020.1835952
pubmed: 33045867
Prabhakar M, Bano H, Kumar I, Shamsi M, Khan M. Pharmacological investigations on vitexin. Planta Med. 1981;43(4):396–403. https://doi.org/10.1055/s-2007-971532 .
doi: 10.1055/s-2007-971532
pubmed: 7330108
de Oliveira D, da Silva C, Iglesias B, Beleboni R. Vitexin possesses anticonvulsant and anxiolytic-like effects in murine animal models. Front Pharmacol. 2020;11:1181. https://doi.org/10.3389/fphar.2020.01181 .
doi: 10.3389/fphar.2020.01181
pubmed: 32848784
pmcid: 7431698
Liu X, Jiang Q, Liu H, Luo S. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol Res. 2019;52(1):7. https://doi.org/10.1186/s40659-019-0214-y .
doi: 10.1186/s40659-019-0214-y
pubmed: 30797236
pmcid: 6387544
Papi A, Farabegoli F, Iori R, Orlandi M, De Nicola G, Bagatta M, et al. Vitexin-2-O-xyloside, raphasatin and (-)-epigallocatechin-3-gallate synergistically affect cell growth and apoptosis of colon cancer cells. Food Chem. 2013;138:1521–30. https://doi.org/10.1016/j.foodchem.2012.11.112 .
doi: 10.1016/j.foodchem.2012.11.112
pubmed: 23411276
Lee J, Mohan C, Shanmugam M, Rangappa S, Sethi G, Siveen K, et al. Vitexin abrogates invasion and survival of hepatocellular carcinoma cells through targeting STAT3 signaling pathway. Biochimie. 2020;175:58–68. https://doi.org/10.1016/j.biochi.2020.05.006 .
doi: 10.1016/j.biochi.2020.05.006
pubmed: 32445654
Yang S, Liao P, Pan Y, Chen S, Chou S, Chou M. The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother Res PTR. 2013;27(8):1154–61. https://doi.org/10.1002/ptr.4841 .
doi: 10.1002/ptr.4841
pubmed: 22976055
Tan Z, Zhang Y, Deng J, Zeng G, Zhang Y. Purified vitexin compound 1 suppresses tumor growth and induces cell apoptosis in a mouse model of human choriocarcinoma. International Journal of Gynecological Cancer : Official Journal of the International Gynecological Cancer Society. Int J Gynecol Cancer. 2012;22(3):360-6. https://doi.org/10.1097/IGC.0b013e31823de844 .
Li Y, Sun Q, Li H, Yang B, Wang M. Vitexin suppresses renal cell carcinoma by regulating mTOR pathways. Transl Androl Urol. 2020;9(4):1700–11. https://doi.org/10.21037/tau-20-1094 .
doi: 10.21037/tau-20-1094
pubmed: 32944531
pmcid: 7475661
Wang W, Cheng H, Gu X, Yin X. The natural flavonoid glycoside vitexin displays preclinical antitumor activity by suppressing NF-κB signaling in nasopharyngeal carcinoma. Onco Targets Ther. 2019;12:4461–8. https://doi.org/10.2147/ott.S210077 .
doi: 10.2147/ott.S210077
pubmed: 31239714
pmcid: 6556475
Min JW, Hu JJ, He M, Sanchez RM, Huang WX, Liu YQ, et al. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1 alpha in a rat pup model. Neuropharmacology. 2015;99:38–50. https://doi.org/10.1016/j.neuropharm.2015.07.007 .
doi: 10.1016/j.neuropharm.2015.07.007
pubmed: 26187393
Abdel Razek A, Talaat M, El-Serougy L, Gaballa G, Abdelsalam M. Clinical applications of arterial spin labeling in brain tumors. J Comput Assist Tomogr. 2019;43(4):525–32. https://doi.org/10.1097/rct.0000000000000873 .
doi: 10.1097/rct.0000000000000873
pubmed: 31162240
Zu YG, Zhang Q, Zhao XH, Wang D, Li W, Sui XY, et al. Preparation and characterization of vitexin powder micronized by a supercritical antisolvent (SAS) process. Powder Technol. 2012;228:47–55. https://doi.org/10.1016/j.powtec.2012.04.048 .
doi: 10.1016/j.powtec.2012.04.048
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907.
doi: 10.3390/molecules23040907
pubmed: 29662019
pmcid: 6017847
Kraft JC, Freeling JP, Wang ZY, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci. 2014;103(1):29–52. https://doi.org/10.1002/jps.23773 .
doi: 10.1002/jps.23773
pubmed: 24338748
Wang GW, Wu BH, Li QY, Chen SQ, Jin XQ, Liu YJ, et al. Active transportation of liposome enhances tumor accumulation, penetration, and therapeutic efficacy. Small. 2020;16(44):14. https://doi.org/10.1002/smll.202004172 .
doi: 10.1002/smll.202004172
Rossier O, Cuvelier D, Borghi N, Puech PH, Derenyi I, Buguin A, et al. Giant vesicles under flows: extrusion and retraction of tubes. Langmuir. 2003;19(3):575–84. https://doi.org/10.1021/la026236t .
doi: 10.1021/la026236t
Pott T, Bouvrais H, Meleard P. Giant unilamellar vesicle formation under physiologically relevant conditions. Chem Phys Lipids. 2008;154(2):115–9. https://doi.org/10.1016/j.chemphyslip.2008.03.008 .
doi: 10.1016/j.chemphyslip.2008.03.008
pubmed: 18405664
Long MS, Cans A-S, Keating CD. Budding and asymmetric protein microcompartmentation in giant vesicles containing two aqueous phases. J Am Chem Soc. 2008;130(2):756–62. https://doi.org/10.1021/ja077439c .
doi: 10.1021/ja077439c
pubmed: 18092782
Wischke C. Concepts for efficient preparation of particulate polymer carrier systems by droplet -based microfluidics. Int J Pharm. 2020;584:19. https://doi.org/10.1016/j.ijpharm.2020.119401 .
doi: 10.1016/j.ijpharm.2020.119401
Koh CG, Zhang XL, Liu SJ, Golan S, Yu B, Yang XJ, et al. Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing. J Control Release. 2010;141(1):62–9. https://doi.org/10.1016/j.jconrel.2009.08.019 .
doi: 10.1016/j.jconrel.2009.08.019
pubmed: 19716852
Essa D, Choonara YE, Kondiah PPD, Pillay V. Comparative nanofabrication of PLGA-chitosan-PEG systems employing microfluidics and emulsification solvent evaporation techniques. Polymers. 2020;12(9). https://doi.org/10.3390/polym12091882 .
Jahn A, Vreeland W, DeVoe D, Locascio L, Gaitan M. Microfluidic directed formation of liposomes of controlled size. Langmuir. 2007;23(11):6289–93. https://doi.org/10.1021/la070051a .
Hong JS, Stavis SM, Lacerda SHD, Locascio LE, Raghavan SR, Gaitan M. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir. 2010;26(13):11581–8. https://doi.org/10.1021/la100879p .
doi: 10.1021/la100879p
pubmed: 20429539
Liu ZM, Du Y, Pang Y. Generation of water-in-oil-in-water (W/O/W) double emulsions by microfluidics. Chin J Anal Chem. 2018;46(3):324–31. https://doi.org/10.11895/j.issn.0253-3820.171187 .
doi: 10.11895/j.issn.0253-3820.171187
Shah VM, Nguyen DX, Patel P, Cote B, Al-Fatease A, Pham Y, et al. Liposomes produced by microfluidics and extrusion: a comparison for scale-up purposes. Nanomed-Nanotechnol Biol Med. 2019;18:146–56. https://doi.org/10.1016/j.nano.2019.02.019 .
doi: 10.1016/j.nano.2019.02.019
Jang B, Park JY, Tung CH, Kim IH, Choi Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano. 2011;5(2):1086–94. https://doi.org/10.1021/nn102722z .
doi: 10.1021/nn102722z
pubmed: 21244012
Chen Q, Wang C, Zhan ZX, He WW, Cheng ZP, Li YY, et al. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials. 2014;35(28):8206–14. https://doi.org/10.1016/j.biomaterials.2014.06.013 .
doi: 10.1016/j.biomaterials.2014.06.013
pubmed: 24957292
Chen R, Wang X, Yao XK, Zheng XC, Wang J, Jiang XQ. Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials. 2013;34(33):8314–22. https://doi.org/10.1016/j.biomaterials.2013.07.034 .
doi: 10.1016/j.biomaterials.2013.07.034
pubmed: 23896004
Seo SH, Kim BM, Joe A, Han HW, Chen XY, Cheng Z, et al. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials. 2014;35(10):3309–18. https://doi.org/10.1016/j.biomaterials.2013.12.066 .
doi: 10.1016/j.biomaterials.2013.12.066
pubmed: 24424205
pmcid: 4576838
Taylor JS, Zeki J, Ikegaki N, Chen LHL, Chiu B. Combined application of Indocyanine green (ICG) and laser lead to targeted tumor cell destruction. J Pediatr Surg. 2018;53(12):2475–9. https://doi.org/10.1016/j.jpedsurg.2018.08.013 .
doi: 10.1016/j.jpedsurg.2018.08.013
pubmed: 30244940
pmcid: 9020883
Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA. 2018;115(17):4465–70. https://doi.org/10.1073/pnas.1718917115 .
doi: 10.1073/pnas.1718917115
pubmed: 29626132
pmcid: 5924901
Xue P, Yang RH, Sun LH, Li Q, Zhang L, Xu ZG, et al. Indocyanine green-conjugated magnetic Prussian blue nanoparticles for synchronous photothermal/photodynamic tumor therapy. Nano-Micro Lett. 2018;10(4). https://doi.org/10.1007/s40820-018-0227-z .
Huang XQ, Wu JR, He MY, Hou XY, Wang Y, Cai XR, et al. Combined cancer chemo-photodynamic and photothermal therapy based on ICG/PDA/TPZ-loaded nanoparticles. Mol Pharm. 2019;16(5):2172–83. https://doi.org/10.1021/acs.molpharmaceut.9b00119 .
doi: 10.1021/acs.molpharmaceut.9b00119
pubmed: 30978027
Hope-Ross M, Yannuzzi LA, Gragoudas ES, Guyer DR, Slakter JS, Sorenson JA, et al. Adverse reactions due to indocyanine green. Ophthalmology. 1994;101(3):529–33. https://doi.org/10.1016/S0161-6420(94)31303-0 .
doi: 10.1016/S0161-6420(94)31303-0
pubmed: 8127574
Jiang XY, Du BJ, Huang YY, Yu MX, Zheng J. Cancer photothermal therapy with ICG-conjugated gold nanoclusters. Bioconjug Chem. 2020;31(5):1522–8. https://doi.org/10.1021/acs.bioconjchem.0c00172 .
doi: 10.1021/acs.bioconjchem.0c00172
pubmed: 32353229
pmcid: 8667163
van de Ven AL, Kim P, Haley O, Fakhoury JR, Adriani G, Schmulen J, et al. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release. 2012;158(1):148–55. https://doi.org/10.1016/j.jconrel.2011.10.021 .
doi: 10.1016/j.jconrel.2011.10.021
pubmed: 22062689
Velpula A, Jukanti R, Janga KY, Sunkavalli S, Bandari S, Kandadi P, et al. Proliposome powders for enhanced intestinal absorption and bioavailability of raloxifene hydrochloride: effect of surface charge. Drug Dev Ind Pharm. 2013;39(12):1895–906. https://doi.org/10.3109/03639045.2012.670641 .
doi: 10.3109/03639045.2012.670641
pubmed: 22458264
Liu J, Wang QL, Omari-Siaw E, Adu-Frimpong M, Liu J, Xu XM, et al. Enhanced oral bioavailability of Bisdemethoxycurcumin-loaded self-microemulsifying drug delivery system: formulation design, in vitro and in vivo evaluation. Int J Pharm. 2020;590. https://doi.org/10.1016/j.ijpharm.2020.119887 .
Zhang XW, Lue SW, Han JH, Sun S, Wang LM, Li YJ. Preparation, characterization and in vivo distribution of solid lipid nanoparticles loaded with syringopicroside. Pharmazie. 2011;66(6):404–7. https://doi.org/10.1691/ph.2011.0350 .
doi: 10.1691/ph.2011.0350
pubmed: 21699077
Bresseleers J, Bagheri M, Lebleu C, Lecommandoux S, Sandre O, Pijpers IAB, et al. Tuning size and morphology of mPEG-b-p(HPMA-Bz) copolymer self-assemblies using microfluidics. Polymers. 2020;12(11). https://doi.org/10.3390/polym12112572 .
Wang QL, Wei QY, Yang QX, Cao X, Li Q, Shi F, et al. A novel formulation of 6 -gingerol: proliposomes with enhanced oral bioavailability and antitumor effect. Int J Pharm. 2018;535(1–2):308–15. https://doi.org/10.1016/j.ijpharm.2017.11.006 .
doi: 10.1016/j.ijpharm.2017.11.006
pubmed: 29126908
Ge ZM, Wang QL, Zhu Q, Yusif M, Yu JN, Xu XM. Improved oral bioavailability, cellular uptake, and cytotoxic activity of zingerone via nano-micelles drug delivery system. J Microencapsul. 2021;38(6):394–404. https://doi.org/10.1080/02652048.2021.1957036 .
doi: 10.1080/02652048.2021.1957036
pubmed: 34278929
Hood R, Shao C, Omiatek D, Vreeland W, DeVoe D. Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res. 2013;30(6):1597–607. https://doi.org/10.1007/s11095-013-0998-3 .
doi: 10.1007/s11095-013-0998-3
pubmed: 23386106
pmcid: 3650128
Martín-Banderas L, González-Prieto R, Rodríguez-Gil A, Fernández-Arévalo M, Flores-Mosquera M, Chávez S, et al. Application of flow focusing to the break-up of a magnetite suspension jet for the production of paramagnetic microparticles. Chemical Engineering Science. #N/A. 2011;2011:527437. https://doi.org/10.1155/2011/527437 .
Yu B, Lee RJ, Lee LJ. Microfluidic methods for production of liposomes. Methods Enzymol. 2009;465:129–41. https://doi.org/10.1016/s0076-6879(09)65007-2 .
doi: 10.1016/s0076-6879(09)65007-2
pubmed: 19913165
pmcid: 3790261
Chen R, Wulff JE, Moffitt MG. Microfluidic processing approach to controlling drug delivery properties of curcumin-loaded block copolymer nanoparticles. Mol Pharm. 2018;15(10):4517–28. https://doi.org/10.1021/acs.molpharmaceut.8b00529 .
doi: 10.1021/acs.molpharmaceut.8b00529
pubmed: 30179485
Zhu Y, Wang MM, Zhang JJ, Peng W, Firempong CK, Deng WW, et al. Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats. Arch Pharm Res. 2015;38(4):512–21. https://doi.org/10.1007/s12272-014-0481-7 .
doi: 10.1007/s12272-014-0481-7
pubmed: 25231341
Li R, Zhang LY, Li ZJ, Xue CH, Dong P, Huang QR, et al. Characterization and absorption kinetics of a novel multifunctional nanoliposome stabilized by sea cucumber saponins instead of cholesterol. J Agric Food Chem. 2020;68(2):642–51. https://doi.org/10.1021/acs.jafc.9b06460 .
doi: 10.1021/acs.jafc.9b06460
pubmed: 31830780
Wiącek AE, Jurak M, Ładniak A, Przykaza K, Szafran K. Cyclosporine CsA—the physicochemical characterization of liposomal and colloidal systems. Colloids Interfaces. 2020;4(4):46.
doi: 10.3390/colloids4040046
Zhang WD, Peng FQ, Zhou TT, Huang YF, Zhang L, Ye P, et al. Targeted delivery of chemically modified anti-miR-221 to hepatocellular carcinoma with negatively charged liposomes. Int J Nanomed. 2015;10:4825–36. https://doi.org/10.2147/ijn.S79598 .
doi: 10.2147/ijn.S79598
Wang Q, Wei C, Weng W, Bao R, Adu-Frimpong M, Toreniyazov E, et al. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int J Pharm. 2021;592:120036. https://doi.org/10.1016/j.ijpharm.2020.120036 .
Wang YW, Wang SC, Firempong CK, Zhang HY, Wang MM, Zhang Y, et al. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations. AAPS PharmSciTech. 2017;18(3):586–94. https://doi.org/10.1208/s12249-016-0537-8 .
doi: 10.1208/s12249-016-0537-8
pubmed: 27151135
Moslehi M, Mortazavi SAR, Azadi A, Fateh S, Hamidi M, Foroutan SM. Preparation, optimization and characterization of chitosan-coated liposomes for solubility enhancement of furosemide: a model BCS IV drug. Iran J Pharm Res IJPR. 2020;19(1):366–82. https://doi.org/10.22037/ijpr.2019.111834.13384 .
doi: 10.22037/ijpr.2019.111834.13384
pubmed: 32922494
Zhang B, Pan WL, Deng YX, He HB, Gou JX, Wang YJ, et al. Panax quinquefoliumsaponin liposomes prepared by passive drug loading for improving intestinal absorption. Drug Dev Ind Pharm. 2020;46(10):1684–94. https://doi.org/10.1080/03639045.2020.1820036 .
doi: 10.1080/03639045.2020.1820036
pubmed: 32996345
Liu Y, Sun C, Li W, Adu-Frimpong M, Wang Q, Yu J, et al. Preparation and characterization of syringic acid-loaded TPGS liposome with enhanced oral bioavailability and in vivo antioxidant efficiency. AAPS PharmSciTech. 2019;20(3):98. https://doi.org/10.1208/s12249-019-1290-6 .
doi: 10.1208/s12249-019-1290-6
pubmed: 30719694
Michelon M, Oliveira DRB, de Figueiredo Furtado G, Gaziola de la Torre L, Cunha RL. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices. Colloids Surf B Biointerfaces. 2017;156:349–57. https://doi.org/10.1016/j.colsurfb.2017.05.033 .
Bottaro E, Nastruzzi C. “Off-the-shelf” microfluidic devices for the production of liposomes for drug delivery. Mater Sci Eng C Mater Biol Appl. 2016;64:29–33. https://doi.org/10.1016/j.msec.2016.03.056 .
doi: 10.1016/j.msec.2016.03.056
pubmed: 27127025
Zhang K, Wang Q, Yang Q, Wei Q, Man N, Adu-Frimpong M, et al. Enhancement of oral bioavailability and anti-hyperuricemic activity of isoliquiritigenin via self-microemulsifying drug delivery system. AAPS PharmSciTech. 2019;20(5):218. https://doi.org/10.1208/s12249-019-1421-0 .
doi: 10.1208/s12249-019-1421-0
pubmed: 31187334
Saxena V, Sadoqi M, Shao J. Degradation kinetics of indocyanine green in aqueous solution. J Pharm Sci. 2003;92(10):2090–7. https://doi.org/10.1002/jps.10470 .
doi: 10.1002/jps.10470
pubmed: 14502548
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3(8):487–97. https://doi.org/10.1016/S1470-2045(02)00818-5 .
doi: 10.1016/S1470-2045(02)00818-5
pubmed: 12147435
Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33–56. https://doi.org/10.1016/S1040-8428(01)00179-2 .
doi: 10.1016/S1040-8428(01)00179-2
pubmed: 12098606
Luo L, Zeng F, Xie J, Fan J, Xiao S, Wang Z, et al. A RBC membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of cervical cancer. J Mater Chem B. 2020;8(18):4080–92. https://doi.org/10.1039/c9tb02937k .
doi: 10.1039/c9tb02937k
pubmed: 32239064
Shao W, Yang C, Li F, Wu J, Wang N, Ding Q, et al. Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nano-Micro Lett. 2020;12(11).
Li JQ, Qi XT, Ye PK, Yang M, Xie M. Construction of WS2/Au-lipid drug delivery system for multiple combined therapy of tumor. J Drug Deliv Sci Technol. 2022;76. https://doi.org/10.1016/j.jddst.2022.103747 .
Zheng XH, Zhou FF, Wu BY, Chen WR, Xing D. Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection. Mol Pharm. 2012;9(3):514–22. https://doi.org/10.1021/mp200526m .
doi: 10.1021/mp200526m
pubmed: 22332810
pmcid: 3418867
Nomikou N, Sterrett C, Arthur C, McCaughan B, Callan JF, McHale AP. The effects of ultrasound and light on indocyanine-green-treated tumour cells and tissues. ChemMedChem. 2012;7(8):1465–71. https://doi.org/10.1002/cmdc.201200233 .
doi: 10.1002/cmdc.201200233
pubmed: 22715137
Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, et al. Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano. 2013;7(3):2056–67. https://doi.org/10.1021/nn400334y .
doi: 10.1021/nn400334y
pubmed: 23413798
Zhou J, Meng LC, Sun C, Ye WR, Chen CQ, Du B. A “protective umbrella” nanoplatform for loading ICG and multi-modal imaging-guided phototherapy. Nanomed-Nanotechnol Biol Med. 2018;14(2):289–301. https://doi.org/10.1016/j.nano.2017.09.009 .
doi: 10.1016/j.nano.2017.09.009
Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, et al. An autoinhibited dimeric form of BAX regulates the BAX activation pathway. Mol Cell. 2016;63(3):485–97. https://doi.org/10.1016/j.molcel.2016.06.010 .
doi: 10.1016/j.molcel.2016.06.010
pubmed: 27425408
pmcid: 4975667
Jensen K, WuWong DJ, Wong S, Matsuyama M, Matsuyama S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp Biol Med (Maywood). 2019;244(8):621–9. https://doi.org/10.1177/1535370219833624 .
doi: 10.1177/1535370219833624
pubmed: 30836793
Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010;37(3):299–310. https://doi.org/10.1016/j.molcel.2010.01.025 .
doi: 10.1016/j.molcel.2010.01.025
pubmed: 20159550
pmcid: 3222298
Rudner J, Jendrossek V, Belka C. New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum. Apoptosis. 2002;7(5):441–7. https://doi.org/10.1023/a:1020087108926 .
doi: 10.1023/a:1020087108926
pubmed: 12207177
Shi WW, Cao X, Liu Q, Zhu Q, Liu K, Deng TW, et al. Hybrid membrane-derived nanoparticles for isoliquiritin enhanced glioma therapy. Pharmaceuticals. 2022;15(9). https://doi.org/10.3390/ph15091059 .