Sex differences, chronobiology and general anaesthesia in activities of the autonomic nervous system in rats.
HRV
chronobiology
rats
sex
Journal
Experimental physiology
ISSN: 1469-445X
Titre abrégé: Exp Physiol
Pays: England
ID NLM: 9002940
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
18
01
2023
accepted:
02
03
2023
medline:
2
6
2023
pubmed:
24
3
2023
entrez:
23
3
2023
Statut:
ppublish
Résumé
What is the topic of this review? Changes in heart rate variability in rats with sex differences and the use of different anaesthesia during light-dark cycles. What advances does it highlight? The review highlights and discusses synthesized current results in order to advance knowledge and understanding of sex differences with an emphasis on changes in the autonomic nervous system determined by heart rate variability. Heart rate variability (HRV) is commonly used in experimental studies to assess sympathetic and parasympathetic activities. The belief that HRV in rodents reflects similar cardiovascular regulations in humans is supported by evidence, and HRV in rats appears to be at least analogous to that in humans, although the degree of influence of the parasympathetic division of the autonomic nervous system (ANS) may be greater in rats than in humans. Experimental studies are based on control or baseline values, on the basis of which the change in ANS activity after a given experimental intervention is assessed, but it is known that the ANS in rats is very sensitive to various stress interventions, such as the manipulation itself, and ANS activity can also differ depending on sex, the time of measurement, and whether the animals are under general anaesthesia. Thus, for correct assessment, changes in ANS activity and their relationship to the observed parameter should be based on whether ANS activity does or does not change but also to what extent the activity is already changed at the start of the experiment. Since rats are considered to be the most suitable model animal for basic cardiovascular research, in this review we point out existing differences in individual HRV frequency parameters at the start of experiments (control, baseline values), taking into account sex in relation to time of measurement and anaesthesia.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
810-817Informations de copyright
© 2023 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Références
Akselrod, S. (1988). Spectral analysis of fluctuations in cardiovascular parameters: A quantitative tool for the investigation of autonomic control. Trends in Pharmacological Sciences, 9(1), 6-9.
Albarwani, S., Al-Siyabi, S., & Tanira, M. O. (2013). Lisinopril indifferently improves heart rate variability during day and night periods in spontaneously hypertensive rats. Physiological Research, 62(3), 237-245.
Baldwin, A. L., Wagers, C., & Schwartz, G. E. (2008). Reiki improves heart rate homeostasis in laboratory rats. Journal of Alternative and Complementary Medicine, 14(4), 417-422.
Bootsma, M., Swenne, C. A., Van Bolhuis, H. H., Chang, P. C., Cats, V. M., & Bruschke, A. V. (1994). Heart rate and heart rate variability as indexes of sympathovagal balance. American Journal of Physiology, 266(4 Pt 2), H1565-H1571.
Caetano, J., & Delgado Alves, J. (2015). Heart rate and cardiovascular protection. European Journal of Internal Medicine, 26(4), 217-222.
Coumel, P., Maison-Blanche, P., & Catuli, D. (1994). Heart rate and heart rate variability in normal young adults. Journal of Cardiovascular Electrophysiology, 5(11), 899-911.
Dampney, R. A. (1994). Functional organization of central pathways regulating the cardiovascular system. Physiological Reviews, 74(2), 323-364.
Duan, W., Ye, P., Leng, Y. Q., Liu, D. H., Sun, J. C., Tan, X., & Wang, W. Z. (2022). Oxidative stress in the RVLM mediates sympathetic hyperactivity induced by circadian disruption. Neuroscience Letters, 791, 136917.
Elkholey, K., Morris, L., Niewiadomska, M., Houser, J., Ramirez, M., Tang, M., Humphrey, M. B., & Stavrakis, S. (2021). Sex differences in the incidence and mode of death in rats with heart failure with preserved ejection fraction. Experimental Physiology, 106(3), 673-682.
Elmas, O., & Comlekci, S. (2015). Investigation of effects of short-term exposure to 50 HZ magnetic field on central, peripheral, and autonomic nervous systems in rats. Bioelectromagnetics, 36(6), 420-429.
Farraj, A. K., Haykal-Coates, N., Winsett, D. W., Hazari, M. S., Carll, A. P., Rowan, W. H., Ledbetter, A. D., Cascio, W. E., & Costa, D. L. (2009). Increased non-conducted P-wave arrhythmias after a single oil fly ash inhalation exposure in hypertensive rats. Environmental Health Perspectives, 117(5), 709-715.
Gonçalves, H., Henriques-Coelho, T., Bernardes, J., Rocha, A. P., Brandão-Nogueira, A., & Leite-Moreira, A. (2010). Analysis of heart rate variability in a rat model of induced pulmonary hypertension. Medical Engineering & Physics, 32(7), 746-752.
Grundt, C., Meier, K., & Lemmer, B. (2006). Gender dependency of circadian blood pressure and heart rate profiles in spontaneously hypertensive rats: Effects of beta-blockers. Chronobiology International, 23(4), 813-829.
Hannon, J. P. (1958). Effect of temperature on the heart rate, electrocardiogram and certain myocardial oxidations of the rat. Circulation Research, 6(6), 771-778.
Hashimoto, M., Harada, T., Ishikawa, T., Obata, M., & Shibutani, Y. (2001). Investigation on diabetic autonomic neuropathy assessed by power spectral analysis of heart rate variability in WBN/Kob rats. Journal of Electrocardiology, 34(3), 243-250.
Hashimoto, M., Kuwahara, M., Tsubone, H., & Sugano, S. (1999). Diurnal variation of autonomic nervous activity in the rat: Investigation by power spectral analysis of heart rate variability. Journal of Electrocardiology, 32(2), 167-171.
Heisser, A. (2020). Effect of exercise and L-citrulline on heart rate in rats. Cantaurus, 28, 5-7.
Johnson, M. S., DeMarco, V. G., Heesch, C. M., Whaley-Connell, A. T., Schneider, R. I., Rehmer, N. T., Tilmon, R. D., Ferrario, C. M., & Sowers, J. R. (2011). Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in the TGR(mRen2)27 rat. American Journal of Physiology. Heart and Circulatory Physiology, 301(4), H1540-H1550.
Koresh, O., Kaplan, Z., Zohar, J., Matar, M. A., Geva, A. B., & Cohen, H. (2016). Distinctive cardiac autonomic dysfunction following stress exposure in both sexes in an animal model of PTSD. Behavioural Brain Research, 308, 128-142.
Lindqvist, A. (1990). Noninvasive methods to study autonomic nervous control of circulation. Acta physiologica Scandinavica. Supplementum, 588, 1-107.
Makino, M., Hayashi, H., Takezawa, H., Hirai, M., Saito, H., & Ebihara, S. (1997). Circadian rhythms of cardiovascular functions are modulated by the baroreflex and the autonomic nervous system in the rat. Circulation, 96(5), 1667-1674.
Malik, M., & Camm, A. J. (1993). Components of heart rate variability-what they really mean and what we really measure. The American Journal of Cardiology, 72(11), 821-822.
Malliani, A., Pagani, M., Lombardi, F., & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84(2), 482-492.
Mamalyga, M. L. (2014). Circadian changes in cardiac rhythm structure in decompensated chronic heart failure. Bulletin of Experimental Biology and Medicine, 156(4), 499-503.
Mansier, P., Clairambault, J., Charlotte, N., Médigue, C., Vermeiren, C., LePape, G., Carré, F., Gounaropoulou, A., & Swynghedauw, B. (1996). Linear and non-linear analyses of heart rate variability: A minireview. Cardiovascular Research, 31(3), 371-379.
Maris, M. E., Melchert, R. B., Joseph, J., & Kennedy, R. H. (2005). Gender differences in blood pressure and heart rate in spontaneously hypertensive and Wistar-Kyoto rats. Clinical and Experimental Pharmacology & Physiology, 32(1-2), 35-39.
Meyer, M. R., Haas, E., & Barton, M. (2006). Gender differences of cardiovascular disease: New perspectives for estrogen receptor signaling. Hypertension, 47(6), 1019-1026.
Molcan, L., Teplan, M., Vesela, A., & Zeman, M. (2013). The long-term effects of phase advance shifts of photoperiod on cardiovascular parameters as measured by radiotelemetry in rats. Physiological Measurement, 34(12), 1623-1632.
Molcan, L., Vesela, A., & Zeman, M. (2014). Repeated phase shifts in the lighting regimen change the blood pressure response to norepinephrine stimulation in rats. Physiological Research, 63(5), 567-575.
Ohnuki, K., Moritani, T., Ishihara, K., & Fushiki, T. (2001). Capsaicin increases modulation of sympathetic nerve activity in rats: measurement using power spectral analysis of heart rate fluctuations. Bioscience, biotechnology, and biochemistry, 65(3), 638-643.
Ohori, T., Hirai, T., Joho, S., Kameyama, T., Nozawa, T., Asanoi, H., & Inoue, H. (2011). Circadian changes in autonomic function in conscious rats with heart failure: Effects of amiodarone on sympathetic surge. Autonomic Neuroscience: Basic & Clinical, 159(1-2), 20-25.
Ramadoss, M., Ramanathan, G., Subbiah, A. J., & Natrajan, C. (2016). Heart rate changes in electroacupuncture treated polycystic ovary in rats. Journal of Clinical and Diagnostic Research, 10(3), CF01-CF3.
Scheer, F. A., Horst, T., G, J., van Der Vliet, J., & Buijs, R. M. (2001). Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. American Journal of Physiology. Heart and Circulatory Physiology, 280(3), H1391-H1399.
Schlatter, J., & Zbinden, G. (1982). Heart rate- and ECG-recording in the rat by biotelemetry. Archives of Toxicology. Supplement = Archiv fur Toxikologie. Supplement, 5, 179-183.
Singh, N. M., Sathyaprabha, T. N., Malthish, K., Thirthalli, J., & Andrade, C. (2018). Early and late postictal cardiac electrophysiological changes associated with low, moderate, and high dose electroconvulsive shocks. Asian Journal of Psychiatry, 33, 78-83.
Spyer, K. M. (1992). Central nervous control of the cardiovascular system. Autonomic Failure. A Text-book of Clinical Disorders of the Autonomic Nervous System, 54-77.
Svorc, P., Bacova, I., & Gresova, S. (2015). Pentobarbital anaesthesia in the chronobiological studies. Biological Rhythm Research, 46(3), 445-452.
Svorc, P., Novakova, M., Bacova, I., Jurasova, Z., & Marossy, A. (2014). Ketamine/xylazine anaesthesia in the chronobiological studies. Biological Rhythm Research, 45(4), 633-642.
Svorc, P., Petrasova, D., & Svorc Jr, P. (2020). Sex differences in HRV under general anesthesia in rat model. Anesthesia and Pain Medicine, 4(1), 1-6.
Svorc, P., Petrasova, D., & Svorc Jr, P. (2022). Study on heart rate variability and heart rate under general anesthesia in rats of both sexes. Chapter 2. In: Issues and Developments in Medicine and Medical Research, 5, 17-22. Print ISBN: 978-93-5547-463-6, eBook ISBN: 978-93-5547-479-7. https://doi.org/10.9734/bpi/idmmr/v5/2413C
Takezawa, H., Hayashi, H., Sano, H., Saito, H., & Ebihara, S. (1994). Circadian and estrous cycle-dependent variations in blood pressure and heart rate in female rats. American Journal of Physiology, 267(5 Pt 2), R1250-R1256.
Towa, S., Kuwahara, M., & Tsubone, H. (2004). Characteristics of autonomic nervous function in Zucker-fatty rats: Investigation by power spectral analysis of heart rate variability. Experimental Animals, 53(2), 137-144.
Wessel, N., Malberg, H., Heringer-Walther, S., Schultheiss, H. P., & Walther, T. (2007). The angiotensin-(1-7) receptor agonist AVE0991 dominates the circadian rhythm and baroreflex in spontaneously hypertensive rats. Journal of Cardiovascular Pharmacology, 49(2), 67-73.
Zaza, A., Ronchi, C., & Malfatto, G. (2018). Arrhythmias and heart rate: Mechanisms and significance of a relationship. Arrhythmia & Electrophysiology Review, 7(4), 232-237.