Bone mineral density and normal-weight obesity syndrome: beyond body weight and body mass index.
Body composition
Bone densities
Food consumption
Obesity
Journal
Journal of bone and mineral metabolism
ISSN: 1435-5604
Titre abrégé: J Bone Miner Metab
Pays: Japan
ID NLM: 9436705
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
23
11
2022
accepted:
02
03
2023
medline:
17
7
2023
pubmed:
24
3
2023
entrez:
23
3
2023
Statut:
ppublish
Résumé
This study aimed to evaluate, for the first time, the bone profile of adult women and men with and without normal-weight obesity (NWO) syndrome and its association with bone health-related nutrient intake, anthropometry, and body composition. This was a cross-sectional study of adults aged between 20 and 59 years with normal body weight, separated according to body fat (BF) percentage into NWO and non-NWO syndrome groups. BF > 30% and > 19% were considered high for women and men, respectively. Socioeconomic, physical activity, food consumption, anthropometric, and body composition data were evaluated. Student's t-test or Mann-Whitney test and Pearson's χ The sample consisted of 224 adults (69.2% women) with a median (interquartile range) age of 23 (21-25) years, 71% of whom had NWO syndrome. Compared with women, a higher percentage of men had a lower-than-expected spinal bone mineral density (BMD) Z-score for age (10%; p = 0.0214). Bone parameters were similar between groups. Spinal BMD was negatively associated with male sex and positively associated with body weight. The femoral BMD was negatively associated with BF percentage and positively associated with body mass index. The negative association of BMD with BF percentage may suggest a higher risk of bone alterations in individuals with NWO syndrome and should be monitored over time.
Identifiants
pubmed: 36952007
doi: 10.1007/s00774-023-01417-y
pii: 10.1007/s00774-023-01417-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
512-521Informations de copyright
© 2023. The Japanese Society Bone and Mineral Research.
Références
De Lorenzo A, Martinoli R, Vaia F, Di Renzo L (2006) Normal weight obese (NWO) women: an evaluation of a candidate new syndrome. Nutr Metab Cardiovasc Dis 16:513–523. https://doi.org/10.1016/j.numecd.2005.10.010
doi: 10.1016/j.numecd.2005.10.010
pubmed: 17126766
Romero-Corral A, Somers VK, Sierra-Johnson J, Korenfeld Y et al (2010) Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J 31:737–746. https://doi.org/10.1093/eurheartj/ehp487
doi: 10.1093/eurheartj/ehp487
pubmed: 19933515
Franco LP, Morais CC, Cominetti C (2016) Normal-weight obesity syndrome: diagnosis, prevalence, and clinical implications. Nutr Rev 74:558–570. https://doi.org/10.1093/nutrit/nuw019
doi: 10.1093/nutrit/nuw019
pubmed: 27473199
Kang S, Kyung C, Park JS, Kim S, Lee SP et al (2014) Subclinical vascular inflammation in subjects with normal weight obesity and its association with body fat: an 18 F-FDG-PET/CT study. Cardiovasc Diabetol 13:70. https://doi.org/10.1186/1475-2840-13-70
doi: 10.1186/1475-2840-13-70
pubmed: 24708764
pmcid: 3994236
Ho-Pham LT, Nguyen UDT, Nguyen TV (2014) Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab 99:30–38. https://doi.org/10.1210/jc.2014-v99i12-30A
doi: 10.1210/jc.2014-v99i12-30A
pubmed: 24384013
Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM et al (2016) The national osteoporosis foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27:1281–1386. https://doi.org/10.1007/s00198-015-3440-3
doi: 10.1007/s00198-015-3440-3
pubmed: 26856587
pmcid: 4791473
Hardcastle AC, Aucott L, Fraser WD, Reid DM, Macdonald HM (2011) Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur J Clin Nut 65:378–385. https://doi.org/10.1038/ejcn.2010.264
doi: 10.1038/ejcn.2010.264
Shin S, Kim S-H, Joung H, Park MJ (2017) Milk-cereal and whole-grain dietary patterns protect against low bone mineral density among male adolescents and young adults. Eur J Clin Nut 71:1101–1107. https://doi.org/10.1038/ejcn.2017.81
doi: 10.1038/ejcn.2017.81
WHO Scientific group on the prevention and management of osteoporosis. Prevention and management of osteoporosis: report of a WHO scientific group. World Health Organization. Tech Rep Ser 921:1–164. https://apps.who.int/iris/handle/10665/42841 . Accessed 10 June 2022
Zaretsky J, Griess-Fishheimer S, Carmi A, Travinsky Shmul T, Ofer L, Sinai T, Penn S, Shahar R, Monsonego-Ornan E (2021) Ultra-processed food targets bone quality via endochondral ossification. Bone Res 9:1–13. https://doi.org/10.1038/s41413-020-00127-9
doi: 10.1038/s41413-020-00127-9
World Medical Association Declaration of Helsinki (2000): ethical principles for medical research involving human subjects. WMA http://www.wma . net/e/policy/b3. Accessed 30 June 2020
World Health Organization (2000) Obesity: preventing and managing the global epidemic Report of a WHO consultation. WHO Tech Rep Ser 894:1–253
Kosmala W, Jedrzejuk D, Dezhko R, Przewlocka-Kosmala M, Mysiak A, Bednarek-Tupikowska G (2012) Left ventricular function impairment in patients with normal-weight obesity: contribution of abdominal fat deposition, profibrotic state, reduced insulin sensitivity, and proinflammatory activation. Circ Cardiovasc Imaging 5:349–356. https://doi.org/10.1161/CIRCIMAGING.111.969956
doi: 10.1161/CIRCIMAGING.111.969956
pubmed: 22407472
Henry GT (1990) Practical sampling. Applied social research methods series, vol 21. Sage Publications, London, pp 17–32
Galasso R, Panico S, Celentano E, Del Pezzo M (1994) Relative validity of multiple telephone versus face-to-face 24-hour dietary recalls. Ann Epidemiol 4:332–336. https://doi.org/10.1016/1047-2797(94)90090-6
doi: 10.1016/1047-2797(94)90090-6
pubmed: 7921324
Brasil CCEB, Filiadas BE. ABEP – Associação Brasileira de Empresas de Pesquisa (2019) Available in: http://www.abep.org/criterio-brasil . Accessed 26 Mar 2022
Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E et al (2001) Questionário internacional de atividade física (Ipaq): estudo de validade e reprodutibilidade no Brasil. Rev Bras Ativ Fis Saud 6:5–18. https://doi.org/10.12820/rbafs.v.6n2p5-18
doi: 10.12820/rbafs.v.6n2p5-18
Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2008) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61:344–349. https://doi.org/10.1016/j.jclinepi.2007.11.008
doi: 10.1016/j.jclinepi.2007.11.008
Lohman TG, Roche AF, Martorell R (1988) Anthropometric standardization reference manual. Human Kinetics Books, Champaign, Illinois
Williams JE, Wells JC, Wilson CM, Haroun D, Lucas A, Fewtrell MS (2006) Evaluation of Lunar Prodigy dual-energy X-ray absorptiometry for assessing body composition in healthy persons and patients by comparison with the criterion 4-component model. Am J Clin Nutr 83:1047–1054. https://doi.org/10.1093/ajcn/83.5.1047
doi: 10.1093/ajcn/83.5.1047
pubmed: 16685045
ISCD—The international society for clinical densitometry (2019) official positions adult 1–34. https://iscd.org/learn/official-positions/adult-positions/ . Accessed 10 June 2022
Boonen S, Kaufman JM, Reginster JY, Devogelaer JP (2003) Patient assessment using standardized bone mineral density values and a national reference database: implementing uniform thresholds for the reimbursement of osteoporosis treatments in Belgium. Osteoporos Int 14:110–115. https://doi.org/10.1007/s00198-002-1321-z
doi: 10.1007/s00198-002-1321-z
pubmed: 12730782
Moshfegh AJ, Rhodes DG, Baer DJ, Murayi T, Clemens JC et al (2008) The US department of agriculture automated multiple-pass: method reduces bias in the collection of energy intakes. Am J Clin Nutr 88:324–332. https://doi.org/10.1093/ajcn/88.2.324
doi: 10.1093/ajcn/88.2.324
pubmed: 18689367
Tucker KL (2007) Assessment of usual dietary intake in population studies of gene- diet interaction. Nutr Metab Cardiovasc Dis 17:74–81. https://doi.org/10.1016/j.numecd.2006.07.010
doi: 10.1016/j.numecd.2006.07.010
pubmed: 17046222
Basiotis P, Welsh SO, Cronin FJ, Kelsay JL, Mertz W (1987) Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J Nutr 117:1638–1641. https://doi.org/10.1093/jn/117.9.1638
doi: 10.1093/jn/117.9.1638
pubmed: 3655942
Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S-1228S. https://doi.org/10.1093/ajcn/65.4.1220S
doi: 10.1093/ajcn/65.4.1220S
pubmed: 9094926
Bozdongan H (1987) Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychomet 52:345–370. https://doi.org/10.1007/BF02294361
doi: 10.1007/BF02294361
Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL (2005) Multivariate data analysis, 6th edn. Pearson University Press, Upper Saddle River, NJ
R: A language and environment for statistical computing, R Core Team, R Foundation for Statistical Computing. 2021. Available in: https://www.R-project.org/ . Accessed 26 Mar 2022
Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale, NJ
Institute of Medicine (2005) Dietary reference intakes for Energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). National Academy Press, Washington, DC
NDA, EFSA Scientific Panel (2015) Scientific opinion on the safety of caffeine. EFSA J 13:4102. https://doi.org/10.2903/j.efsa.2015.4102
doi: 10.2903/j.efsa.2015.4102
Freuer D, Meisinger C, Linseisen J (2021) Causal relationship between dietary macronutrient composition and anthropometric measures: a bidirectional two-sample Mendelian randomization analysis. Clin Nutr 40:4120–4131. https://doi.org/10.1016/j.clnu.2021.01.047
doi: 10.1016/j.clnu.2021.01.047
pubmed: 33610420
Castellanos-Gutiérrez A, Sánchez-Pimienta TG, Carriquiry A, Costa THM, Ariza AC (2018) Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutr J 17:114. https://doi.org/10.1186/s12937-018-0422-2
doi: 10.1186/s12937-018-0422-2
pubmed: 30518394
pmcid: 6282375
Huang JH, Lu YF, Cheng FC, Lee JNY, Tsai LC (2012) Correlation of magnesium intake with metabolic parameters, depression and physical activity in elderly type 2 diabetes patients: a cross-sectional study. Nutr J 11:41. https://doi.org/10.1186/1475-2891-11-41
doi: 10.1186/1475-2891-11-41
pubmed: 22695027
pmcid: 3439347
Lu L, Chen C, Yang K, Zhu J, Xun P, Shikany JM, He K (2020) Magnesium intake is inversely associated with risk of obesity in a 30-year prospective follow-up study among American young adults. Eur J Nutr 59:3745–3753. https://doi.org/10.1007/s00394-020-02206-3
doi: 10.1007/s00394-020-02206-3
pubmed: 32095867
pmcid: 7483156
Dibaba D, Xun P, He K (2014) Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur J Clin Nutr 68:510–516. https://doi.org/10.1038/ejcn.2014.7
doi: 10.1038/ejcn.2014.7
pubmed: 24518747
pmcid: 3975661
Piyathilake CJ, Badiga S, Alvarez RD, Partridge EE, Johanning GL (2013) A lower degree of PBMC L1 methylation is associated with excess body weight and higher HOMO-IR in the presence of lower concentrations of plasma folate. PLoS ONE 8:e54544. https://doi.org/10.1371/journal.pone.0054544
doi: 10.1371/journal.pone.0054544
pubmed: 23358786
pmcid: 3554730
Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31:629–662. https://doi.org/10.1210/er.2009-0044
doi: 10.1210/er.2009-0044
pubmed: 20431112
Reid IR (2010) Fat and bone. Arch Biochem Biophys 503:20–27. https://doi.org/10.1016/j.abb.2010.06.027
doi: 10.1016/j.abb.2010.06.027
pubmed: 20599663
Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8:567–573. https://doi.org/10.1002/jbmr.5650080507
doi: 10.1002/jbmr.5650080507
pubmed: 8511983
Yang X, Sun LW, Liang M, Wang XN, Fan YB (2015) The response of wnt/ß-catenin signaling pathway in osteocytes under simulated microgravity. Microgravity Sci Technol 27:473–483. https://doi.org/10.1007/s12217-015-9439-8
doi: 10.1007/s12217-015-9439-8
Basso N, Heersche JN (2006) Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone 39:807–814. https://doi.org/10.1016/j.bone.2006.04.014
doi: 10.1016/j.bone.2006.04.014
pubmed: 16765658
Henry YM, Eastell R (2000) Ethnic and gender differences in bone mineral density and bone turnover in young adults: effect of bone size. Osteoporos Int 11:512–517. https://doi.org/10.1007/s001980070094
doi: 10.1007/s001980070094
pubmed: 10982167
Zhu K, Briffa K, Smith A, Mountain J, Briggs AM, Lye S, Pennell C, Straker L, Walsh P (2014) Gender differences in the relationships between lean body mass, fat mass and peak bone mass in young adults. Osteopor Int 25:1563–1570. https://doi.org/10.1007/s00198-014-2665-x
doi: 10.1007/s00198-014-2665-x
Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V (2007) Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab 92:143–147. https://doi.org/10.1210/jc.2006-0794
doi: 10.1210/jc.2006-0794
pubmed: 17047019
Zhao L, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2009) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29. https://doi.org/10.1359/jbmr.070813
doi: 10.1359/jbmr.070813
Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37:474–481. https://doi.org/10.1016/j.bone.2005.04.038
doi: 10.1016/j.bone.2005.04.038
pubmed: 16040285
Douchi T, Yamamoto S, Kuwahata R, Oki T, Yamasaki H, Nagata Y (2000) Effect of non–weight-bearing body fat on bone mineral density before and after menopause. Obstet Gynecol 96:13–17. https://doi.org/10.1016/S0029-7844(00)00814-0
doi: 10.1016/S0029-7844(00)00814-0
pubmed: 10862834
Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T et al (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin 83:146–154. https://doi.org/10.1093/ajcn/83.1.146
doi: 10.1093/ajcn/83.1.146
Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055. https://doi.org/10.1210/endo.142.12.8536
doi: 10.1210/endo.142.12.8536
pubmed: 11713196
Cao JJ (2011) Effects of obesity on bone metabolism. J Orthop Surg Res 6:1–7. https://doi.org/10.1186/1749-799X-6-30
doi: 10.1186/1749-799X-6-30
Kawai M, Devlin MJ, Rosen CJ (2009) Fat targets for skeletal health. Nat Rev Rheumatol 5:365–372. https://doi.org/10.1038/nrrheum.2009.102
doi: 10.1038/nrrheum.2009.102
pubmed: 19468288
pmcid: 3661210
Dirckx N, Moorer MC, Clemens TL, Riddle RC (2019) The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol 15:651–665. https://doi.org/10.1038/s41574-019-0246-y
doi: 10.1038/s41574-019-0246-y
pubmed: 31462768
pmcid: 6958555
Zhu K, Hunter M, James A, Lim EM, Walsh JP (2015) Associations between body mass index, lean and fat body mass and bone mineral density in middle-aged Australians: the Busselton healthy ageing study. Bone 74:146–152. https://doi.org/10.1016/j.bone.2015.01.015
doi: 10.1016/j.bone.2015.01.015
pubmed: 25652209