Paper microfluidics with deep learning for portable intelligent nucleic acid amplification tests.
COVID-19 diagnosis
Deep learning
NAAT
Paper microfluidics
Journal
Talanta
ISSN: 1873-3573
Titre abrégé: Talanta
Pays: Netherlands
ID NLM: 2984816R
Informations de publication
Date de publication:
01 Jun 2023
01 Jun 2023
Historique:
received:
21
01
2023
revised:
01
03
2023
accepted:
17
03
2023
medline:
5
4
2023
pubmed:
24
3
2023
entrez:
23
3
2023
Statut:
ppublish
Résumé
During global outbreaks such as COVID-19, regular nucleic acid amplification tests (NAATs) have posed unprecedented burden on hospital resources. Data of traditional NAATs are manually analyzed post assay. Integration of artificial intelligence (AI) with on-chip assays give rise to novel analytical platforms via data-driven models. Here, we combined paper microfluidics, portable optoelectronic system with deep learning for SARS-CoV-2 detection. The system was quite streamlined with low power dissipation. Pixel by pixel signals reflecting amplification of synthesized SARS-CoV-2 templates (containing ORF1ab, N and E genes) can be real-time processed. Then, the data were synchronously fed to the neural networks for early prediction analysis. Instead of the quantification cycle (C
Identifiants
pubmed: 36958098
pii: S0039-9140(23)00221-7
doi: 10.1016/j.talanta.2023.124470
pmc: PMC10027307
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
124470Informations de copyright
Copyright © 2023 Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
JAMA. 2018 Sep 18;320(11):1101-1102
pubmed: 30178065
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780
pubmed: 33705321
Nucleic Acids Res. 2008 Aug;36(14):e91
pubmed: 18603594
Front Bioeng Biotechnol. 2021 Nov 29;9:773304
pubmed: 34912791
Nat Rev Microbiol. 2021 Mar;19(3):171-183
pubmed: 33057203
Talanta. 2021 Apr 1;225:121986
pubmed: 33592734
Cell. 2020 Jun 11;181(6):1423-1433.e11
pubmed: 32416069
J Hazard Mater. 2022 Apr 15;428:128165
pubmed: 35007967
Anal Chem. 2021 Jul 27;93(29):10048-10055
pubmed: 34251790
Nat Protoc. 2008;3(5):877-82
pubmed: 18451795
Nature. 2014 Mar 13;507(7491):181-9
pubmed: 24622198
Nat Biomed Eng. 2020 Dec;4(12):1159-1167
pubmed: 33273713
Sci Transl Med. 2020 Jun 3;12(546):
pubmed: 32493791
Clin Infect Dis. 2021 May 18;72(10):e685-e686
pubmed: 32785682
Sci Adv. 2021 Jan 1;7(1):
pubmed: 33219112
Sci Transl Med. 2020 Aug 12;12(556):
pubmed: 32719001
J Clin Virol. 2020 Jul;128:104412
pubmed: 32416600
Biosens Bioelectron. 2022 Jul 1;207:114192
pubmed: 35334331
Biotechnol Bioeng. 2021 May;118(5):2053-2066
pubmed: 33615437
Nat Med. 2020 Aug;26(8):1212-1217
pubmed: 32546823
Anal Chem. 2018 Oct 16;90(20):11827-11834
pubmed: 30136577
Nat Commun. 2021 Nov 30;12(1):6994
pubmed: 34848705
ACS Sens. 2022 Dec 23;7(12):3720-3729
pubmed: 36383745
Anal Chem. 2010 Jan 1;82(1):3-10
pubmed: 20000334
Chaos Solitons Fractals. 2020 Nov;140:110212
pubmed: 32839642
Lab Chip. 2017 Mar 29;17(7):1206-1249
pubmed: 28251200