Computational Model of In Vivo Corneal Pharmacokinetics and Pharmacodynamics of Topically Administered Ophthalmic Drug Products.


Journal

Pharmaceutical research
ISSN: 1573-904X
Titre abrégé: Pharm Res
Pays: United States
ID NLM: 8406521

Informations de publication

Date de publication:
Apr 2023
Historique:
received: 29 09 2022
accepted: 09 02 2023
medline: 26 4 2023
pubmed: 25 3 2023
entrez: 24 3 2023
Statut: ppublish

Résumé

Although the eye is directly accessible on the surface of the human body, drug delivery can be extremely challenging due to the presence of multiple protective barriers in eye tissues. Researchers have developed complex formulation strategies to overcome these barriers to ophthalmic drug delivery. Current development strategies rely heavily on in vitro experiments and animal testing to predict human pharmacokinetics (PK) and pharmacodynamics (PD). The primary objective of the study was to develop a high-fidelity PK/PD model of the anterior eye for topical application of ophthalmic drug products. Here, we present a physiologically-based in silico approach to predicting PK and PD in rabbits after topical administration of ophthalmic products. A first-principles based approach was used to describe timolol dissolution, transport, and distribution, including consideration of ionized transport, following topical instillation of a timolol suspension. Using literature transport and response parameters, the computational model described well the concentration-time and response-time profiles in rabbit. Comparison of validated rabbit model results and extrapolated human model results demonstrate observable differences in the distribution of timolol at multiple time points. This modeling framework provides a tool for model-based prediction of PK in eye tissues and PD after topical ophthalmic drug administration to the eyes.

Identifiants

pubmed: 36959411
doi: 10.1007/s11095-023-03480-6
pii: 10.1007/s11095-023-03480-6
doi:

Substances chimiques

Timolol 817W3C6175
Ophthalmic Solutions 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

961-975

Subventions

Organisme : FDA HHS
ID : U01 FD006929
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol. 2013;2(2):47–64.
pubmed: 25590022 pmcid: 4289909 doi: 10.5497/wjp.v2.i2.47
Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems–recent advances. Prog Retin Eye Res. 1998;17(1):33–58.
pubmed: 9537794 doi: 10.1016/S1350-9462(97)00002-5
Gulsen D, Chauhan A. Ophthalmic drug delivery through contact lenses. Invest Ophthalmol Vis Sci. 2004;45(7):2342–7.
pubmed: 15223815 doi: 10.1167/iovs.03-0959
Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics [Internet]. 2018 Feb 27 [cited 2018 Apr 20];10(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874841/ .
Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev. 1995;16(1):39–43.
doi: 10.1016/0169-409X(95)00012-V
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.
pubmed: 20437123 pmcid: 2895432 doi: 10.1208/s12248-010-9183-3
Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.
pubmed: 27798766 pmcid: 5319401 doi: 10.1007/s13346-016-0339-2
Worakul N, Robinson JR. Ocular pharmacokinetics/pharmacodynamics. Eur J Pharm Biopharm. 1997;44(1):71–83.
doi: 10.1016/S0939-6411(97)00064-7
Bao Q, Newman B, Wang Y, Choi S, Burgess DJ. In vitro and ex vivo correlation of drug release from ophthalmic ointments. J Control Release Off J Control Release Soc. 2018;28(276):93–101.
doi: 10.1016/j.jconrel.2018.03.003
Prantil-Baun R, Novak R, Das D, Somayaji MR, Przekwas A, Ingber DE. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips. Annu Rev Pharmacol Toxicol. 2018;58(1):37–64.
pubmed: 29309256 doi: 10.1146/annurev-pharmtox-010716-104748
Shen J, Burgess DJ. In vitro-in vivo correlation for complex non-oral drug products: Where do we stand? J Control Release Off J Control Release Soc. 2015;10(219):644–51.
doi: 10.1016/j.jconrel.2015.09.052
Somayaji MR, Das D, Przekwas A. A new level a type IVIVC for the rational design of clinical trials toward regulatory approval of generic polymeric long-acting injectables. Clin Pharmacokinet. 2016;55(10):1179–90.
pubmed: 27349905 doi: 10.1007/s40262-016-0388-1
Zhang X, Zheng N, Lionberger RA, Yu LX. Innovative approaches for demonstration of bioequivalence: the US FDA perspective. Ther Deliv. 2013;4(6):725–40.
pubmed: 23738669 doi: 10.4155/tde.13.41
Balachandran RK, Barocas VH. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm Res. 2008;25(11):2685–96.
pubmed: 18679772 doi: 10.1007/s11095-008-9691-3
Kavousanakis ME, Kalogeropoulos NG, Hatziavramidis DT. Computational modeling of drug delivery to the posterior eye. Chem Eng Sci. 2014;28(108):203–12.
doi: 10.1016/j.ces.2014.01.005
Kotha S, Murtomäki L. Virtual pharmacokinetic model of human eye. Math Biosci. 2014;1(253):11–8.
doi: 10.1016/j.mbs.2014.03.014
Loke CY, Ooi EH, Salahudeen MS, Ramli N, Samsudin A. Segmental aqueous humour outflow and eye orientation have strong influence on ocular drug delivery. Appl Math Model. 2018;1(57):474–91.
doi: 10.1016/j.apm.2018.01.007
Oh C, Saville BA, Cheng YL, Rootman DS. A compartmental model for the ocular pharmacokinetics of cyclosporine in rabbits. Pharm Res. 1995;12(3):433–7.
pubmed: 7617533 doi: 10.1023/A:1016268922035
Park J, Bungay PM, Lutz RJ, Augsburger JJ, Millard RW, Sinha Roy A, et al. Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release Off J Control Release Soc. 2005;105(3):279–95.
doi: 10.1016/j.jconrel.2005.03.010
Pinsky PM. Three-dimensional modeling of metabolic species transport in the cornea with a hydrogel intrastromal inlay. Invest Ophthalmol Vis Sci. 2014 Apr 8.
Shikamura Y, Ohtori A, Tojo K. Drug penetration of the posterior eye tissues after topical instillation: in vivo and in silico simulation. Chem Pharm Bull (Tokyo). 2011;59(10):1263–7.
pubmed: 21963636 doi: 10.1248/cpb.59.1263
Tojo K. A pharmacokinetic model for ocular drug delivery. Chem Pharm Bull (Tokyo). 2004;52(11):1290–4.
pubmed: 15516748 doi: 10.1248/cpb.52.1290
Avtar R, Tandon D. Modeling the drug transport in the anterior segment of the eye. Eur J Pharm Sci. 2008;35(3):175–82.
pubmed: 18662774 doi: 10.1016/j.ejps.2008.06.004
Deng F, Ranta VP, Kidron H, Urtti A. General pharmacokinetic model for topically administered ocular drug dosage forms. Pharm Res. 2016;33(11):2680–90.
pubmed: 27431864 doi: 10.1007/s11095-016-1993-2
Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–88.
pubmed: 10189253 doi: 10.1021/js9802594
Pak J, Chen ZJ, Sun K, Przekwas A, Walenga R, Fan J. Computational modeling of drug transport across the in vitro cornea. Comput Biol Med. 2018;1(92):139–46.
doi: 10.1016/j.compbiomed.2017.11.009
Kannan R, Chen ZJ, Singh N, Przekwas A, Delvadia R, Tian G, et al. A quasi-3D wire approach to model pulmonary airflow in human airways. Int J Numer Methods Biomed Eng. 2017 Jul;33(7).
Przekwas A, Friend T, Teixeira R, Chen ZJ, Wilkerson P. Spatial modeling tools for cell biology [Internet]. CFD RESEARCH CORP HUNTSVILLE AL, CFD RESEARCH CORP HUNTSVILLE AL; 2006 Oct [cited 2018 May 3]. Available from: http://www.dtic.mil/docs/citations/ADA460852 .
Kinsey VE, Reddy DVN. Chemistry and dynamics of aqueous humour. In: Prince JH, editor. The Rabbit Eye in Research. C.C. Thomas, Springfield; 1964. p. 218–319.
Patton NM. The biology of the laboratory rabbit. The Biology of the Laboratory Rabbit. 1994. 27–45 p.
Gupta C, Chauhan A, Mutharasan R, Srinivas SP. Measurement and modeling of diffusion kinetics of a lipophilic molecule across rabbit cornea. Pharm Res. 2010;27(4):699–711.
pubmed: 20182774 doi: 10.1007/s11095-010-0066-1
Missel PJ. Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm Res. 2012;29(12):3251–72.
pubmed: 22752935 pmcid: 3497967 doi: 10.1007/s11095-012-0721-9
Brubaker RF, Nagataki S, Townsend DJ, Burns RR, Higgins RG, Wentworth W. The effect of age on aqueous humor formation in man. Ophthalmology. 1981;88(3):283–8.
pubmed: 7231919 doi: 10.1016/S0161-6420(81)35037-4
Struble C, Howard S, Relph J. Comparison of ocular tissue weights ( volumes ) and tissue collection techniques in commonly used preclinical animal species mean male and female. 2014;2014.
Sawada T, Nakamura J, Nishida Y, Kani K, Morikawa S, Inubushi T. Magnetic resonance imaging studies of the volume of the rabbit eye with intravenous mannitol. 2002;25(3):173–7.
Ahmed I, Francoeur ML, Thombre AG, Patton TF. The Kinetics of Timolol in the Rabbit Lens: Implications for Ocular Drug Delivery. Pharm Res Off J Am Assoc Pharm Sci. 1989;6(9):772–8.
Zhang W, Prausnitz MR, Edwards AAA. Model of transient drug diffusion across cornea. J Control Release Off J Control Release Soc. 2004;99(2):241–58.
doi: 10.1016/j.jconrel.2004.07.001
Francoeur ML, Sitek SJ, Costello B, Patton TF. Kinetic disposition and distribution of timolol in the rabbit eye. A physiologically based ocular model. Int J Pharm. 1985;25(3):275–92.
Henriksson JT, De Paiva C, Farley W, Pflugfelder S, Burns A, Bergmanson J. Morphologic alterations of the palpebral conjunctival epithelium in a dry eye model. Cornea. 2013;32(4):483–90.
pubmed: 23146932 pmcid: 3578023 doi: 10.1097/ICO.0b013e318265682c
Zhang X, Li Q, Xiang M, Zou H, Liu B, Zhou H, et al. Bulbar Conjunctival Thickness Measurements With Optical Coherence Tomography in Healthy Chinese Subjects. Invest Ophthalmol Vis Sci. 2013;54:4705–9.
pubmed: 23744999 doi: 10.1167/iovs.12-11003
Narayanaswamy A, Zheng C, Perera SA, Htoon HM, Friedman DS, Tun TA, et al. Variations in iris volume with physiologic mydriasis in subtypes of primary angle closure glaucoma. Invest Ophthalmol Vis Sci. 2013;54(1):708–13.
pubmed: 23299474 doi: 10.1167/iovs.12-10844
Baurmann M. Über die Entstehung von Scleralausbuchtungen unter dem Sehnerveneintritt an Kolobomaugen. Albrecht Von Graefes Arch Für Ophthalmol. 1923;112(3–4):495–505.
doi: 10.1007/BF01857439
Chrai SS, Patton TF, Mehta A, Robinsonx JR. Lacrimal and Instilled Fluid Dynamics in Rabbit Eyes. J Pharm Sci. 1973;67(7):1112–21.
doi: 10.1002/jps.2600620712
Avtar R, Tandon D. Mathematical Modelling of Intraretinal Oxygen Partial Pressure. Trop J Pharm Res. 2008;7(4):1107–16.
doi: 10.4314/tjpr.v7i4.14696
Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: A literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–88.
pubmed: 10189253 doi: 10.1021/js9802594
Vareilles P, Silverstone D, Plazonnet B, Le Douarec JC, Sears ML, Stone CA. Comparison of the effects of timolol and other adrenergic agents on intraocular pressure in the rabbit. Invest Ophthalmol Vis Sci. 1977;16(11):987–96.
pubmed: 21145
Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of β-blocking agents: II - assessment of barrier contributions. J Pharm Sci. 1983;72(11):1272–9.
pubmed: 6139472 doi: 10.1002/jps.2600721108
Sakanaka K, Kawazu K, Tomonari M, Kitahara T, Nakashima M, Nishida K, et al. Ocular pharmacokinetic/pharmacodynamic modeling for timolol in rabbits using a telemetry system. Biol Pharm Bull. 2008;31(5):970–5.
pubmed: 18451528 doi: 10.1248/bpb.31.970
Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–9.
pubmed: 21293732 pmcid: 3032230 doi: 10.2174/1874364101004010052
Sonntag JR, Brindley GO, Shields MB. Effect of timolol therapy on outflow facility. Invest Ophthalmol Vis Sci. 1978;17(3):293–6.
pubmed: 627467
Coakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure: in the normal eye. Arch Ophthalmol. 1978;96(11):2045–8.
pubmed: 363105 doi: 10.1001/archopht.1978.03910060433007
Kinsey V, Reddy D. Chemistry and dynamics of aqueous humor. in: the rabbit in eye research. Springfield, IL: CC Thomas; 1964. p. 218–319. (Chemistry and dynamics of aqueous humor).
Ahmed I, Patton TF. Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm. 1987;38(1):9–21.
doi: 10.1016/0378-5173(87)90092-5
Adams BM, Ebeida MS, Eldred MS, Jakeman JD, Swiler LP, Stephens JA, et al. DAKOTA, A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.3 User’s Manual. Sandia Technical Report SAND2014–4633; 2015.
Lee VHL, Luo AM, Li S, Podder SK, Chang JSC, Ohdo S, et al. Pharmacokinetic basis for nonadditivity of intraocular pressure lowering in timolol combinations. Invest Ophthalmol Vis Sci. 1991;32(11):2948–57.
pubmed: 1917398
Ahmed I, Patton TF. Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm. 1987;38(1–3):9–21.
doi: 10.1016/0378-5173(87)90092-5
Gwon A, Tsonis P, Gwon A. Animal Models in Eye Research. 1st ed. Animal models in eye research. San Diego, Ca: Elsevier; 2008. 184–204 p.
Narayanaswamy A, Zheng C, Perera SA, Htoon HM, Friedman DS, Tun TA, et al. Variations in iris volume with physiologic mydriasis in subtypes of primary angle closure glaucoma. Invest Ophthalmol Vis Sci. 2013;54(1):708–13.
pubmed: 23299474 doi: 10.1167/iovs.12-10844
Struble C, Howard S, Relph J. Comparison of ocular tissue weights (volumes) and tissue collection techniques in commonly used preclinical animal species. Acta Ophthalmol (Copenh). 2014 Aug 20;92(s253):0–0.

Auteurs

Carrie German (C)

CFD Research Corporation, Computational Biology Division, 6820 Moquin Dr NW, Huntsville, AL, 35806, USA. carrie.german@cfd-research.com.

Zhijian Chen (Z)

CFD Research Corporation, Computational Biology Division, 6820 Moquin Dr NW, Huntsville, AL, 35806, USA.

Andrzej Przekwas (A)

CFD Research Corporation, Computational Biology Division, 6820 Moquin Dr NW, Huntsville, AL, 35806, USA.

Ross Walenga (R)

Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.

Andrew Babiskin (A)

Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.

Liang Zhao (L)

Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.

Jianghong Fan (J)

Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.

Ming-Liang Tan (ML)

Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH