Marine ecosystem shifts with deglacial sea-ice loss inferred from ancient DNA shotgun sequencing.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
24 03 2023
24 03 2023
Historique:
received:
09
02
2022
accepted:
20
02
2023
medline:
28
3
2023
entrez:
25
3
2023
pubmed:
26
3
2023
Statut:
epublish
Résumé
Sea ice is a key factor for the functioning and services provided by polar marine ecosystems. However, ecosystem responses to sea-ice loss are largely unknown because time-series data are lacking. Here, we use shotgun metagenomics of marine sedimentary ancient DNA off Kamchatka (Western Bering Sea) covering the last ~20,000 years. We traced shifts from a sea ice-adapted late-glacial ecosystem, characterized by diatoms, copepods, and codfish to an ice-free Holocene characterized by cyanobacteria, salmon, and herring. By providing information about marine ecosystem dynamics across a broad taxonomic spectrum, our data show that ancient DNA will be an important new tool in identifying long-term ecosystem responses to climate transitions for improvements of ocean and cryosphere risk assessments. We conclude that continuing sea-ice decline on the northern Bering Sea shelf might impact on carbon export and disrupt benthic food supply and could allow for a northward expansion of salmon and Pacific herring.
Identifiants
pubmed: 36964154
doi: 10.1038/s41467-023-36845-x
pii: 10.1038/s41467-023-36845-x
pmc: PMC10039020
doi:
Substances chimiques
DNA, Ancient
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1650Informations de copyright
© 2023. The Author(s).
Références
PLoS One. 2012;7(12):e52249
pubmed: 23284954
Mol Ecol Resour. 2021 Apr;21(3):801-815
pubmed: 33319428
ISME J. 2019 Oct;13(10):2566-2577
pubmed: 31235841
Nat Ecol Evol. 2017 Apr 20;1(5):145
pubmed: 28812681
PLoS One. 2017 Jun 28;12(6):e0178955
pubmed: 28658253
Geobiology. 2019 Jul;17(4):436-448
pubmed: 30843322
ISME Commun. 2021 Nov 9;1(1):66
pubmed: 36755065
Proc Natl Acad Sci U S A. 1989 Mar;86(6):1939-43
pubmed: 2928314
PLoS Biol. 2011 Aug;9(8):e1001127
pubmed: 21886479
ISME J. 2017 Jun;11(6):1372-1385
pubmed: 28267153
PeerJ. 2017 May 23;5:e3360
pubmed: 28560108
Sci Adv. 2020 Feb 26;6(9):eaay2915
pubmed: 32133399
Front Microbiol. 2019 Nov 26;10:2722
pubmed: 31849876
Science. 2017 May 12;356(6338):605-608
pubmed: 28450384
Nucleic Acids Res. 2017 Jun 2;45(10):e79
pubmed: 28119419
Microb Ecol. 2012 Apr;63(3):471-89
pubmed: 22124570
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Comput Struct Biotechnol J. 2021 May 04;19:2687-2698
pubmed: 34093985
Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1880-8
pubmed: 24706809
Nat Protoc. 2013 Apr;8(4):737-48
pubmed: 23493070
Sci Rep. 2021 Feb 5;11(1):3220
pubmed: 33547359
Nat Commun. 2019 Sep 5;10(1):3998
pubmed: 31488846
Biochemistry (Mosc). 2017 Dec;82(12):1538-1548
pubmed: 29486704
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4684-9
pubmed: 25825727
Genome Biol. 2019 Dec 16;20(1):280
pubmed: 31842945
Commun Biol. 2020 Oct 8;3(1):558
pubmed: 33033377
Front Microbiol. 2019 Oct 23;10:2373
pubmed: 31708883
Science. 2009 Oct 23;326(5952):539
pubmed: 19900890
Nature. 2016 Sep 1;537(7618):45-49
pubmed: 27509852
Genome Biol. 2019 Nov 28;20(1):257
pubmed: 31779668
Science. 2006 Mar 10;311(5766):1461-4
pubmed: 16527980
Nat Commun. 2020 Jan 14;11(1):254
pubmed: 31937756