Reconnoitring the antioxidant and antibacterial potential of different fruits after tannin acyl hydrolase mediated biotransformation.
DPPH
antimicrobial activity
antioxidant activity
biotransformation
hydrolyzable tannins
microtiter plate method
tannin acyl hydrolase
tannins
total phenols
Journal
Biotechnology and applied biochemistry
ISSN: 1470-8744
Titre abrégé: Biotechnol Appl Biochem
Pays: United States
ID NLM: 8609465
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
26
08
2022
accepted:
12
03
2023
medline:
11
8
2023
pubmed:
26
3
2023
entrez:
25
3
2023
Statut:
ppublish
Résumé
Condensed and hydrolyzable tannins are secondary metabolites present in almost every plant part. Tannase enzyme acts on hydrolyzable tannins to produce gallic acid and tannase-mediated end-products with immense therapeutic potential. Seven different fruits with significant presence of hydrolyzable tannin content were selected to check for phenol, tannin, and hydrolyzable tannin contents. Prunus domestica had the maximum phenol content, that is, 85.4 ± 0.207, followed by Syzygium cumini, Fragaria ananassa, Rubus fruticosus, and Psidium guajava. Plum showed the maximum number of hydrolyzable tannins. Fruit extracts were subjected to tannase hydrolysis and their antimicrobial and antioxidant activities were determined. There was a significant increase in the antioxidant abilities of the fruits with Punica granatum extract, displaying the highest decline of 132 units of IC
Substances chimiques
Tannins
0
Hydrolyzable Tannins
0
Antioxidants
0
Hydrolases
EC 3.-
Plant Extracts
0
Phenols
0
Anti-Bacterial Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1439-1449Informations de copyright
© 2023 International Union of Biochemistry and Molecular Biology, Inc.
Références
Campo M, Pinelli, P, Romani A. Nat Prod Commun. 2016;11:409-15
Serrano J, Puupponen-Pimiä R, Dauer A, Aura A-M, Saura-Calixto F. Mol Nutr Food Res. 2009;53:310-29
Márquez-López A, Ayala-Flores F, Macías-Pureco S, Chávez-Parga MC, Valencia Flores DC, Maya-Yescas R. Food Sci Technol. 2020;40:430-9
Sharma KP. Biocatal Agric Biotechnol. 2019;21:101342
Sutapa BM, Vansh K, Vaibhav A, Gopa RB. J Med Plants Res. 2016;10:838-47
Lipińska L, Klewicka E, Sójka M. Acta Sci Pol Technol Aliment. 2014;13:289-99
Fraga-Corral M, Otero P, Cassani L, Echave J, Garcia-Oliveira P, Carpena M, et al. Foods. 2021;10:251
Joshi SG, Basalingappa K, Prasad N. Lap Lambert Academic Publishing, S.L.; 2021
EL-Tanash AB, Bdreldien YA, Darwish DB, Sherief ADA. Mansoura J Biol. 2014;14:1173-81
Govindarajan RK, Khanongnuch C, Mathivanan K, Shyu DJH, Sharma KP, De Mandal S. J Food Sci Technol. 2021;58:3235-42
Vinson JA, Su X, Zubik L, Bose P. J Agric Food Chem. 2001;49:5315-21
Lin X, Chen X, Chen X, Zheng Y, Sun Y. Molecules. 2011;16:7432-41
Kramkowski K, Leszczynska D, Przyborowski K, Gajecka M, Buczynska B. Molecules. 2019;24:4395
Sreeramulu G, Zhu Y, Knol W. J Agric Food Chem. 2000;48:2589-94
Chen C, Liu W, Zheng Y. Nat Commun. 2018;9:1-12
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard J-P, Taillandier P. J Food Sci. 2018;83:580-8
Gadre R, Rajyaguru J, Shirsat S. Poult Sci. 2004;83:291-6
Kumar M, Singh A, Beniwal V, Salar RK. AMB Express. 2016;6:46
Singleton VL, Rossi JA. Am J Enol Vitic. 1965;16:144-58
Hagerman AE, Butler LG. J Agric Food Chem. 1978;26:809-12
Makkar HPS. Quantification of tannins in tree and shrub foliage. Dordrecht: Springer Netherlands; 2003. p. 53-54.
Bossu CM, Ferreira EC, Chaves FS, Menezes EA, Nogueira ARA. Microchem J. 2006;84:88-92
Iibuchi S, Minoda Y, Yamada K. Agric Biol Chem. 1967;31:513-518
Jagetia GC. J Explor Res Pharmacol. 2017;2:54-66
Rajak RC, Singh A, Banerjee R. Biocatal Biotransformation. 2017;35:27-34
Raghuwanshi S, Misra S, Saxena RK. J Food Process Preserv. 2013;37:855-63
Aung EE, Kristanti AN, Aminah NS, Takaya Y, Ramadhan R. Open Chem. 2018;18:1256-81
García-Villalba R, Espín JC, Aaby K, Alasalvar C, Heinonen M, Jacobs G, et al. J Agric Food Chem. 2015;63:6555-66
Lipińska L, Klewicka, E, Sójka M. Acta Sci Pol Technol Aliment. 2014;13:289-99
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Br J Pharmacol. 2017;174:1244-62
Kristl J, Slekovec M, Tojnko S, Unuk T. Food Chem. 2011;125:29-34
Ghosh P, Pradhan R, Mishra S, Singh A, Kar A. Curr Res Nutr Food Sci J. 2017;5:25-35
Shoukat S, Mahmudiono T, Al-Shawi SG, Abdelbasset WK, Yasin G, Shichiyakh RA. Food Sci Technol. 2022;42:e118521
Jayaprakasha GK, Singh RP, Sakariah KK. Food Chem. 2001;73:285-90
Liu M, Li XQ, Weber C, Lee CY, Brown J, Liu RH. J Agric Food Chem. 2012;60:5721-30
Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. J Agric Food Chem. 2002;50:588-94
Csepregi K, Neugart S, Schreiner M, Hideg É, Sass L. Molecules. 2015;20:17069-80
Wu X, Gu L, Prior RL, Mckay S. J Agric Food Chem. 2004;52:7846-56
Sangwan A, Kawatra A, Sehgal S. J Food Sci Technol. 2014;51:2070-7
Singh RP, Chidambara Murthy KN, Jayaprakasha GK. J Agric Food Chem. 2008;56:8055-61
Kalemba D, Kasprowicz MJ, Młynarz P. J Appl Microbiol. 2015;118:1398-405
Fazly Bazzaz BS, Mohammadi M, Hosseini SM, Hosseini SV. J Appl Pharm Sci. 2013;3:064-7
Vukovic NL, Misic DM, Popovic MR, Colovic JM, Sukdolak SS, Vukovic GS. J Sci Food Agric. 2017;97:1824-31
Talebzadeh F, Shahidi F, Vasiee A. Food Sci Nutr. 2018;6:1476-83.
Bhatia H, Mittal P, Singh G, Kumari A. J Microbiol Biotechnol Res. 2012;2:356-9
Li Y, Guo C, Yang J, Wei J, Xu J, Cheng S, et al. Food Nutr Sci. 2015;6:1400-12
Zaidi F, Zaman S, Husain FM, Amjad MS. J Med Plant Res. 2015;9:464-9
Vosnjak M, Persic M, Veberic R, Usenik V. Eur J Hortic Sci. 2020;85:439-46