Modeling identifies variability in SARS-CoV-2 uptake and eclipse phase by infected cells as principal drivers of extreme variability in nasal viral load in the 48 h post infection.
Mechanistic modeling
Nasal infection
SARS-CoV-2
Viral load
Journal
Journal of theoretical biology
ISSN: 1095-8541
Titre abrégé: J Theor Biol
Pays: England
ID NLM: 0376342
Informations de publication
Date de publication:
21 05 2023
21 05 2023
Historique:
received:
23
02
2023
revised:
14
03
2023
accepted:
17
03
2023
medline:
14
4
2023
pubmed:
26
3
2023
entrez:
25
3
2023
Statut:
ppublish
Résumé
The SARS-CoV-2 coronavirus continues to evolve with scores of mutations of the spike, membrane, envelope, and nucleocapsid structural proteins that impact pathogenesis. Infection data from nasal swabs, nasal PCR assays, upper respiratory samples, ex vivo cell cultures and nasal epithelial organoids reveal extreme variabilities in SARS-CoV-2 RNA titers within and between the variants. Some variabilities are naturally prone to clinical testing protocols and experimental controls. Here we focus on nasal viral load sensitivity arising from the timing of sample collection relative to onset of infection and from heterogeneity in the kinetics of cellular infection, uptake, replication, and shedding of viral RNA copies. The sources of between-variant variability are likely due to SARS-CoV-2 structural protein mutations, whereas within-variant population variability is likely due to heterogeneity in cellular response to that particular variant. With the physiologically faithful, agent-based mechanistic model of inhaled exposure and infection from (Chen et al., 2022), we perform statistical sensitivity analyses of the progression of nasal viral titers in the first 0-48 h post infection, focusing on three kinetic mechanisms. Model simulations reveal shorter latency times of infected cells (including cellular uptake, viral RNA replication, until the onset of viral RNA shedding) exponentially accelerate nasal viral load. Further, the rate of infectious RNA copies shed per day has a proportional influence on nasal viral load. Finally, there is a very weak, negative correlation of viral load with the probability of infection per virus-cell encounter, the model proxy for spike-receptor binding affinity.
Identifiants
pubmed: 36965846
pii: S0022-5193(23)00066-8
doi: 10.1016/j.jtbi.2023.111470
pmc: PMC10033495
pii:
doi:
Substances chimiques
RNA, Viral
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
111470Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL136961
Pays : United States
Organisme : NIAID NIH HHS
ID : R43 AI149894
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002489
Pays : United States
Organisme : NHLBI NIH HHS
ID : UH3 HL123645
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL108808
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK065988
Pays : United States
Organisme : NIAID NIH HHS
ID : R44 AI157661
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI165853
Pays : United States
Informations de copyright
Copyright © 2023 Elsevier Ltd. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
PLoS Pathog. 2022 Sep 12;18(9):e1010802
pubmed: 36095030
PLoS Comput Biol. 2021 Dec 23;17(12):e1009735
pubmed: 34941862
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8):
pubmed: 33536313
N Engl J Med. 2021 Aug 12;385(7):585-594
pubmed: 34289274
Science. 2021 Apr 16;372(6539):
pubmed: 33688063
Cell Death Dis. 2020 Nov 6;11(11):957
pubmed: 33159040
Cell. 2020 Dec 10;183(6):1520-1535.e14
pubmed: 33157038
Science. 2020 Mar 13;367(6483):1260-1263
pubmed: 32075877
Lancet. 2021 Jul 17;398(10296):207-209
pubmed: 34197809
Science. 2021 Feb 19;371(6531):850-854
pubmed: 33495308
Lancet. 2021 Jun 19;397(10292):2331-2333
pubmed: 34090624
N Engl J Med. 2020 Aug 6;383(6):590-592
pubmed: 32402155
PLoS Pathog. 2021 Apr 7;17(4):e1009499
pubmed: 33826681
Diagn Microbiol Infect Dis. 2008 Dec;62(4):382-8
pubmed: 18842376
Risk Anal. 2010 Jul;30(7):1129-38
pubmed: 20497390
Curr Drug Deliv. 2012 Nov;9(6):566-82
pubmed: 22788696
Sci Adv. 2019 Oct 30;5(10):eaax4761
pubmed: 31692968
PLoS Comput Biol. 2011 Feb 03;7(2):e1001058
pubmed: 21304934
J Virol. 2022 Mar 23;96(6):e0207721
pubmed: 35225672
Sci Signal. 2017 Dec 12;10(509):
pubmed: 29233916
J Med Virol. 2022 Apr;94(4):1641-1649
pubmed: 34914115
J Korean Med Sci. 2020 Feb 24;35(7):e84
pubmed: 32080990
Nat Commun. 2022 Jan 24;13(1):460
pubmed: 35075154
R Soc Open Sci. 2021 Nov 17;8(11):202345
pubmed: 34804559
Nature. 2022 Mar;603(7902):706-714
pubmed: 35104837
Cell. 2020 Aug 20;182(4):812-827.e19
pubmed: 32697968
N Engl J Med. 2021 Jun 17;384(24):2352-2354
pubmed: 33826819
Cell. 2020 Nov 12;183(4):1043-1057.e15
pubmed: 32970989
Cell. 2020 May 28;181(5):1016-1035.e19
pubmed: 32413319
J Theor Biol. 2023 Jan 21;557:111334
pubmed: 36306828
J Virol. 2021 Jun 24;95(14):e0013021
pubmed: 33893170
Cell. 2020 Jul 23;182(2):429-446.e14
pubmed: 32526206
Nature. 2020 May;581(7809):465-469
pubmed: 32235945
GMS Curr Top Otorhinolaryngol Head Neck Surg. 2010;9:Doc07
pubmed: 22073111
Nat Rev Immunol. 2013 Dec;13(12):875-87
pubmed: 24157572
Nat Microbiol. 2022 May;7(5):640-652
pubmed: 35484231
Sci Adv. 2020 Nov 20;6(47):
pubmed: 33097472
J Infect. 2021 Oct;83(4):e1-e3
pubmed: 34419559
Nat Rev Drug Discov. 2007 Jan;6(1):67-74
pubmed: 17195033
ACS Cent Sci. 2022 Jan 26;8(1):22-42
pubmed: 35106370
J Infect Dis. 2005 Jun 1;191(11):1861-8
pubmed: 15871119
Science. 2022 Feb 18;375(6582):760-764
pubmed: 35050643
Mucosal Immunol. 2021 Mar;14(2):305-316
pubmed: 33244161
N Engl J Med. 2022 Jul 21;387(3):275-277
pubmed: 35767428
Cell. 2021 Mar 4;184(5):1171-1187.e20
pubmed: 33621484
Elife. 2020 Apr 02;9:
pubmed: 32228860
Cell Rep Med. 2022 Mar 15;3(3):100564
pubmed: 35474739
Proc Natl Acad Sci U S A. 2022 Feb 1;119(5):
pubmed: 35058348
Biophys J. 2022 May 3;121(9):1619-1631
pubmed: 35378080
Virus Evol. 2019 Jan 30;5(1):vey038
pubmed: 30723550
Elife. 2021 Aug 13;10:
pubmed: 34387545
iScience. 2022 Jun 17;25(6):104448
pubmed: 35634576
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49):
pubmed: 34857628
PLoS Pathog. 2021 Dec 2;17(12):e1010022
pubmed: 34855916
Viruses. 2021 May 17;13(5):
pubmed: 34067878
Nature. 2022 Mar;603(7902):715-720
pubmed: 35104836
Sci Transl Med. 2021 Oct 27;13(617):eabh1803
pubmed: 34705523
Sci Transl Med. 2020 Dec 9;12(573):
pubmed: 33229462
Cell Rep. 2022 Apr 19;39(3):110694
pubmed: 35397208
J Exp Med. 2020 Jun 1;217(6):
pubmed: 32353870
Cell. 2023 Jan 5;186(1):112-130.e20
pubmed: 36580912
Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17441-6
pubmed: 17954909
J Theor Biol. 2022 Dec 21;555:111293
pubmed: 36208668
Cell Rep. 2017 Nov 7;21(6):1692-1704
pubmed: 29117571