The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth.


Journal

Molecular reproduction and development
ISSN: 1098-2795
Titre abrégé: Mol Reprod Dev
Pays: United States
ID NLM: 8903333

Informations de publication

Date de publication:
04 2023
Historique:
revised: 10 03 2023
received: 21 10 2022
accepted: 12 03 2023
medline: 21 4 2023
pubmed: 27 3 2023
entrez: 26 3 2023
Statut: ppublish

Résumé

The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.

Identifiants

pubmed: 36966489
doi: 10.1002/mrd.23683
doi:

Substances chimiques

Vascular Endothelial Growth Factor A 0
Vascular Endothelial Growth Factors 0
Protein Isoforms 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

201-217

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Abdel-Ghani, M., Shimizu, T., & Suzuki, H. (2014). Expression pattern of vascular endothelial growth factor in canine folliculogenesis and its effect on the growth and development of follicles after ovarian organ culture. Reproduction in Domestic Animals, 49, 734-739. https://doi.org/10.1111/rda.12357
Abedal-Majed, M. A., Kurz, S. G., Springman, S. A., McNeel, A. K., Freetly, H. C., Largen, V., Magamage, M., Sargent, K. M., Wood, J. R., Cushman, R. A., & Cupp, A. S. (2020). Vascular endothelial growth factor A isoforms modulate follicle development in peripubertal heifers independent of diet through diverse signal transduction pathways. Biology of Reproduction, 102, 680-692. https://doi.org/10.1093/biolre/ioz211
Abir, R., Ao, A., Zhang, X. Y., Garor, R., Nitke, S., & Fisch, B. (2010). Vascular endothelial growth factor A and its two receptors in human preantral follicles from fetuses, girls, and women. Fertility and Sterility, 93, 2337-2347. https://doi.org/10.1016/j.fertnstert.2009.01.111
Abramovich, D., Celin, A. R., Hernandez, F., Tesone, M., & Parborell, F. (2009). Spatiotemporal analysis of the protein expression of angiogenic factors and their related receptors during folliculogenesis in rats with and without hormonal treatment. Reproduction (Cambridge, England), 137, 309-320. https://doi.org/10.1530/REP-08-0130
Abramovich, D., Parborell, F., & Tesone, M. (2006). Effect of a vascular endothelial growth factor (VEGF) inhibitory treatment on the folliculogenesis and ovarian apoptosis in gonadotropin-treated prepubertal rats. Biology of Reproduction, 75, 434-441. https://doi.org/10.1095/biolreprod.106.051052
Acosta, T. J., Hayashi, K. G., Matsui, M., & Miyamoto, A. (2005). Changes in follicular vascularity during the first follicular wave in lactating cows. Journal of Reproduction and Development, 51, 273-280. https://doi.org/10.1262/jrd.160929
Aerts, J. M., & Bols, P. E. (2010a). Ovarian follicular dynamics: A review with emphasis on the bovine species. Part I: Folliculogenesis and pre-antral follicle development. Reproduction in Domestic Animals, 45, 171-179. https://doi.org/10.1111/j.1439-0531.2008.01302.x
Aerts, J. M., & Bols, P. E. (2010b). Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in Domestic Animals, 45, 180-187. https://doi.org/10.1111/j.1439-0531.2008
Apte, R. S., Chen, D. S., & Ferrara, N. (2019). VEGF in signaling and disease: Beyond discovery and development. Cell, 176, 1248-1264. https://doi.org/10.1016/j.cell.2019.01.021
Araújo, V. R., Gastal, M. O., Wischral, A., Figueiredo, J. R., & Gastal, E. L. (2014). In vitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone. Theriogenology, 82, 1246-1253. https://doi.org/10.1016/j.theriogenology.2014.08.004
Artac, R. A., McFee, R. M., Longfellow Smith, R. A., Baltes-Breitwisch, M. M., Clopton, D. T., & Cupp, A. S. (2009). Neutralization of vascular endothelial growth factor antiangiogenic isoforms is more effective than treatment with proangiogenic isoforms in stimulating vascular development and follicle progression in the perinatal rat ovary. Biology of Reproduction, 81, 978-988. https://doi.org/10.1095/biolreprod.109.078097
Artini, P. G., Ruggiero, M., Parisen Toldin, M. R., Monteleone, P., Monti, M., Cela, V., & Genazzani, A. R. (2009). Vascular endothelial growth factor and its soluble receptor in patients with polycystic ovary syndrome undergoing IVF. Human Fertility, 12, 40-44. https://doi.org/10.1080/14647270802621358
Baddela, V. S., Sharma, A., Michaelis, M., & Vanselow, J. (2020). HIF1 driven transcriptional activity regulates steroidogenesis and proliferation of bovine granulosa cells. Scientific Reports, 10(1), https://doi.org/10.1038/s41598-020-60935-1
Balasubramanian, S., Ramakrishnan, S., Charboneau, R., Wang, J., Barke, R. A., & Roy, S. (2001). Morphine sulfate inhibits hypoxia-induced vascular endothelial growth factor expression in endothelial cells and cardiac myocytes. Journal of Molecular and Cellular Cardiology, 33(12), 2179-2187. https://doi.org/10.1006/jmcc.2001.1480
Barboni, B., Turriani, M., Galeati, G., Spinaci, M., Bacci, M. L., Forni, M., & Mattioli, M. (2000). Vascular endothelial growth factor production in growing pig antral follicles. Biology of Reproduction, 63, 858-864. https://doi.org/10.1095/biolreprod63.3.858
Bender, H. R., Trau, H. A., & Duffy, D. M. (2018). Placental growth factor is required for ovulation, luteinization, and angiogenesis in primate ovulatory follicles. Endocrinology, 159, 710-722. https://doi.org/10.1210/en.2017-00739
Berisha, B., Schams, D., Kosmann, M., Amselgruber, W., & Einspanier, R. (2000). Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. Journal of Endocrinology, 167(3), 371-382. https://doi.org/10.1677/joe.0.1670371
Berisha, B., Schams, D., Rodler, D., & Pfaffl, M. W. (2015). Angiogenesis in the ovary. The most important regulatory event for follicle and corpus luteum development and function in cow an overview. Anatomia, Histologia, Embryologia, 45, 124-130. https://doi.org/10.1111/ahe.12180
Bondeva, T., & Wolf, G. (2015). Role of neuropilin-1 in diabetic nephropathy. Journal of Clinical Medicine, 4, 1293-1311. https://doi.org/10.3390/jcm4061293
Braw-Tal, R., & Yossefi, S. (1997). Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. Reproduction (Cambridge, England), 109, 165-171. https://doi.org/10.1530/jrf.0.1090165
Brito, A., Brito, D., Silva, W. B., Rodrigues, A., Figueiredo, J., Domingues, S., & Santos, R. (2018). Morphology and morphometry of preantral follicles, and immunolocalization of angiogenic factors in ovarian tissue from the neotropical primate Sapajus apella. Zygote, 26, 424-429. https://doi.org/10.1017/S0967199418000503
Cao, Y., Linden, P., Farnebo, J., Cao, R., Eriksson, A., Kumar, V., Qi, J. H., Claesson-Welsh, L., & Alitalo, K. (1998). Vascular endothelial growth factor C induces angiogenesis in vivo. Proceedings of the National Academy of Sciences, 95, 14389-14394. https://doi.org/10.1073/pnas.95.24.14389
Celik-Ozenci, C., Akkoyunlu, G., Kayisli, U. A., Arici, A., & Demir, R. (2003). Localization of vascular endothelial growth factor in the zona pellucida of developing ovarian follicles in the rat: A possible role in destiny of follicles. Histochemistry and Cell Biology, 120, 383-390. https://doi.org/10.1007/s00418-003-0586-4
Chowdhury, M. W. H., Scaramuzzi, R. J., Wheeler-Jones, C. P. D., & Khalid, M. (2010). The expression of angiogenic growth factors and their receptors in ovarian follicles throughout the estrous cycle in the ewe. Theriogenology, 73, 856-872. https://doi.org/10.1016/j.theriogenology.2009.10.011
Clark, A. R., & Stokes, Y. M. (2011). Follicle structure influences the availability of oxygen to the oocyte in antral follicles. Computational and Mathematical Methods in Medicine, 2011, 1-9. https://doi.org/10.1155/2011/287186
Clarke, H. (2017). Control of mammalian oocyte development by interactions with the maternal follicular environment. Results and Problems in Cell Differentiation, 63, 17-41. https://doi.org/10.1007/978-3-319-60855-6_2
Cramer, T., Schipani, E., Johnson, R. S., Swoboda, B., & Pfander, D. (2004). Expression of VEGF isoforms by epiphyseal chondrocytes during low-oxygen tension is HIF-1α dependent. Osteoarthritis and Cartilage, 12(6), 433-439. https://doi.org/10.1016/j.joca.2004.02.003
Cross, M. J., Dixelius, J., Matsumoto, T., & Claesson-Welsh, L. (2003). VEGF-receptor signal transduction. Trends in Biochemical Sciences, 28, 488-494. https://doi.org/10.1016/S0968-0004(03)00193-2
Danforth, D. R., Arbogast, L. K., Ghosh, S., Dickerman, A., Rofagha, R., & Friedman, C. I. (2003). Vascular endothelial growth factor stimulates preantral follicle growth in the rat ovary. Biology of Reproduction, 68, 1736-1741. https://doi.org/10.1095/biolreprod.101.000679
de Castro e Paula, L. A., Andrzejewski, J., Julian, D., Spicer, L. J., & Hansen, P. J. (2008). Oxygen and steroid concentrations in preovulatory follicles of lactating dairy cows exposed to acute heat stress. Theriogenology, 69, 805-813. https://doi.org/10.1016/j.theriogenology.2007.12.008
Djordjevic, S., & Driscoll, P. C. (2013). Targeting VEGF signalling via the neuropilin co-receptor. Drug Discovery Today, 18, 447-455. https://doi.org/10.1016/j.drudis.2013.11.013
Duffy, D. M., Ko, C., Jo, M., Brannstrom, M., & Curry, T. E. (2019). Ovulation: Parallels with inflammatory processes. Endocrine Reviews, 40, 369-416. https://doi.org/10.1210/er.2018-00075
Eswarappa, S. M., Potdar, A. A., Koch, W. J., Fan, Y., Vasu, K., Lindner, D., Willard, B., Graham, L. M., DiCorleto, P. E., & Fox, P. L. (2014). Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell, 157, 1605-1618. https://doi.org/10.1016/j.cell.2014.04.033
Fadhillah, Yoshioka, S., Nishimura, R., Yamamoto, Y., Kimura, K., & Okuda, K. (2017). Hypoxia-inducible factor 1 mediates hypoxia-enhanced synthesis of progesterone during luteinization of granulosa cells. Journal of Reproduction and Development, 63(1), 75-85. https://doi.org/10.1262/jrd.2016-068
Fair, T. (2003). Follicular oocyte growth and acquisition of developmental competence. Animal Reproduction Science, 78, 203-216. https://doi.org/10.1016/s0378-4320(03)00091-5
Fair, T., Hulshof, S. C. J., Hyttel, P., Greve, T., & Boland, M. (1997). Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles. Molecular Reproduction and Development, 46, 208-215. https://doi.org/10.1002/(SICI)1098-2795(199702)46:2<208::AID:MRD11>3.0.CO;2-X
Fang, J., Xia, C., Cao, Z., Zheng, J. Z., Reed, E., & Jiang, B. H. (2005). Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. The FASEB Journal, 19, 342-353. https://doi.org/10.1096/fj.04-2175com
Fantin, A., Lampropoulou, A., Senatore, V., Brash, J. T., Prahst, C., Lange, C. A., Liyanage, S. E., Raimondi, C., Bainbridge, J. W., Augustin, H. G., & Ruhrberg, C. (2017). VEGF165-induced vascular permeability requires NRP1 for ABL-mediated SRC family kinase activation. Journal of Experimental Medicine, 214, 1049-1064. https://doi.org/10.1084/jem.20160311
Fátima, L. A., Evangelista, M. C., Silva, R. S., Cardoso, A. P. M., Baruselli, P. S., & Papa, P. C. (2013). FSH up-regulates angiogenic factors in luteal cells of buffaloes. Domestic Animal Endocrinology, 45, 224-237. https://doi.org/10.1016/j.domaniend.2013.09.004
Feng, Y., Cui, P., Lu, X., Hsueh, B., Möller Billig, F., Zarnescu Yanez, L., Tomer, R., Boerboom, D., Carmeliet, P., Deisseroth, K., & Hsueh, A. J. W. (2017). CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions. Scientific Reports, 7(1), https://doi.org/10.1038/srep44810
Ferrara, N. (2004). Vascular Endothelial Growth Factor: Basic Science and Clinical Progress. Endocrine Reviews, 25(4), 581-611. https://doi.org/10.1210/er.2003-0027
Ferrara, N., Gerber, H.-P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669-676. https://doi.org/10.1038/nm0603-669
Fong, G. H., Rossant, J., Gertsenstein, M., & Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376, 66-70. https://doi.org/10.1038/376066a0
Fortune, J. E., Rivera, G. M., Evans, A. C. O., & Turzillo, A. M. (2001). Differentiation of dominant versus subordinate follicles in cattle. Biology of Reproduction, 65, 648-654. https://doi.org/10.1095/biolreprod65.3.648
Fraser, H. M., & Duncan, W. C. (2009). SRB reproduction, fertility and development award lecture 2008. regulation and manipulation of angiogenesis in the ovary and endometrium. Reproduction, Fertility, and Development, 21, 377-392. https://doi.org/10.1071/rd08272
Fraser, H. M., & Wulff, C. (2001). Angiogenesis in the primate ovary. Reproduction, Fertility, and Development, 13, 557-566. https://doi.org/10.1071/rd01055
Gao, X., Zhang, J., Pan, Z., Li, Q., & Liu, H. (2020). The distribution and expression of vascular endothelial growth factor A (VEGFA) during follicular development and atresia in the pig. Reproduction, Fertility, and Development, 32, 259-266. https://doi.org/10.1071/RD18508
Gerber, H.-P., Condorelli, F., Park, J., & Ferrara, N. (1997). Differential Transcriptional Regulation of the Two Vascular Endothelial Growth Factor Receptor Genes. Journal of Biological Chemistry, 272(38), 23659-23667. https://doi.org/10.1074/jbc.272.38.23659
Gershon, E., & Dekel, N. (2020). Newly identified regulators of ovarian folliculogenesis and ovulation. International Journal of Molecular Sciences, 21, 4565. https://doi.org/10.3390/ijms21124565
Ginther, O. J. (2019). Intraovarian spatial and vascular harmony between follicles and corpus luteum in monovulatory heifers, mares, and women. Theriogenology, 128, 31-39. https://doi.org/10.1016/j.theriogenology.2019.01.019
Gook, D. A., Edgar, D. H., Lewis, K., Sheedy, J. R., & Gardner, D. K. (2014). Impact of oxygen concentration on adult murine pre-antral follicle development in vitro and the corresponding metabolic profile. MHR: Basic Science of Reproductive Medicine, 20(1), 31-41. https://doi.org/10.1093/molehr/gat062
Gougeon, A., & Busso, D. (2000). Morphologic and functional determinants of primordial and primary follicles in the monkey ovary. Molecular and Cellular Endocrinology, 163, 33-42. https://doi.org/10.1016/s0303-7207(00)00220-3
Greenaway, J., Connor, K., Pedersen, H. G., Coomber, B. L., LaMarre, J., & Petrik, J. (2004). Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology, 145, 2896-2905. https://doi.org/10.1210/en.2003-1620
Guyot, M., Hilmi, C., Ambrosetti, D., Merlano, M., Nigro, C. L., Durivault, J., Grépin, R., & Pagès, G. (2017). Targeting the pro-angiogenic forms of VEGF or inhibiting their expression as anti-cancer strategies. Oncotarget, 8, 9174-9188. https://doi.org/10.18632/oncotarget.13942
Guzmán, A., Hughes, C. H. K., & Murphy, B. D. (2021). Orphan nuclear receptors in angiogenesis and follicular development. Reproduction (Cambridge, England), 162, R35-R54. https://doi.org/10.1530/REP-21-0118
Guzmán, A., Macías-Valencia, R., Fierro-Fierro, F., Gutiérrez, C. G., & Rosales-Torres, A. M. (2015). The corpora lutea proangiogenic state of VEGF system components is turned to antiangiogenic at the later phase of the oestrous cycle in cows. Animal, 9, 301-307. https://doi.org/10.1017/S1751731114002274
Harper, S. J., & Bates, D. O. (2008). VEGF-A splicing: The key to anti-angiogenic therapeutics? Nature Reviews Cancer, 8, 880-887. https://doi.org/10.1038/nrc2505
Hernández-Coronado, C. G., Guzmán, A., Castillo-Juárez, H., Zamora-Gutiérrez, D., & Rosales-Torres, A. M. (2019). Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Annales d'endocrinologie, 80, 263-272. https://doi.org/10.1016/j.ando.2019.06.003
Hernández-Coronado, C. G., Guzmán, A., Rodríguez, A., Mondragón, J. A., Romano, M. C., Gutiérrez, C. G., & Rosales-Torres, A. M. (2016). Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. General and Comparative Endocrinology, 236, 1-8. https://doi.org/10.1016/j.ygcen.2016.06.029
Hernández-Morales, J., Hernández-Coronado, C. G., Guzmán, A., Zamora-Gutiérrez, D., Fierro, F., Gutiérrez, C. G., & Rosales-Torres, A. M. (2021). Hypoxia up-regulates VEGF ligand and downregulates VEGF soluble receptor mRNA expression in bovine granulosa cells in vitro. Theriogenology, 165, 76-83. https://doi.org/10.1016/j.theriogenology.2021.02.006
Hirshfield, A. N. (1991). Theca cells may be present at the outset of follicular growth. Biology of Reproduction, 44, 1157-1162. https://doi.org/10.1095/biolreprod44.6.1157
Holmes, D. I., & Zachary, I. (2005). The vascular endothelial growth factor (VEGF) family: Angiogenic factors in health and disease. Genome Biology, 6, 209. https://doi.org/10.1186/gb-2005-6-2-209
Hsueh, A. J. W., Kawamura, K., Cheng, Y., & Fauser, B. C. J. M. (2015). Intraovarian control of early folliculogenesis. Endocrine Reviews, 36, 1-24. https://doi.org/10.1210/er.2014-1020
Iijima, K., Jiang, J. Y., Shimizu, T., Sasada, H., & Sato, E. (2005). Acceleration of follicular development by administration of vascular endothelial growth factor in cycling female rats. Journal of Reproduction and Development, 51, 161-168. https://doi.org/10.1262/jrd.51.161
Irusta, G., Abramovich, D., Parborell, F., & Tesone, M. (2010). Direct survival role of vascular endothelial growth factor (VEGF) on rat ovarian follicular cells. Molecular and Cellular Endocrinology, 325, 93-100. https://doi.org/10.1016/j.mce.2010.04.018
Jagannathan, L., Cuddapah, S., & Costa, M. (2016). Oxidative stress under ambient and physiological oxygen tension in tissue culture. Current Pharmacology Reports, 2, 64-72. https://doi.org/10.1007/s40495-016-0050-5
Jakimiuk, A. J., Nowicka, M. A., Zagozda, M., Koziol, K., Lewandowski, P., & Issat, T. (2017). High levels of soluble vascular endothelial growth factor receptor-1/sFlt1 and low levels of vascular endothelial growth factor in follicular fluid on the day of oocyte retrieval correlate with ovarian hyperstimulation syndrome regardless of the stimulation protocol. Journal of Physiology and Pharmacology, 3, 477-484.
Jayasinghe (2009). Hypoxia-induced reduction of sVEGFR-2 levels in human colonic microvascular endothelial cells in vitro: Comparative study with HUVEC. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm_00000100
Jiang, J., Macchiarelli, G., Tsang, B., & Sato, E. (2003). Capillary angiogenesis and degeneration in bovine ovarian antral follicles. Reproduction (Cambridge, England), 125, 211-223. https://doi.org/10.1530/rep.0.1250211
Kim, J.-Y., & Lee, J.-Y. (2017). Targeting Tumor Adaption to Chronic Hypoxia: Implications for Drug Resistance, and How It Can Be Overcome. International Journal of Molecular Sciences, 18(9), 1854. https://doi.org/10.3390/ijms18091854
Kim, S. O., Trau, H. A., & Duffy, D. M. (2017). Vascular endothelial growth factors C and D may promote angiogenesis in the primate ovulatory follicle. Biology of Reproduction, 96, 389-400. https://doi.org/10.1095/biolreprod.116.144733
Kim, Y. W., & Byzova, T. V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, 123, 625-631. https://doi.org/10.1182/blood-2013-09-512749
Kizuka, F., Tokuda, N., Takagi, K., Adachi, Y., Lee, L., Tamura, I., Maekawa, R., Taketani, T., Tamura, H., Suzuki, T., Owada, Y., & Sugino, N. (2012). Involvement of bone marrow-derived vascular progenitor cells in neovascularization during formation of the corpus luteum in mice. Biology of Reproduction, 87, 55. https://doi.org/10.1095/biolreprod.112.099960
Kowalewski, M. P., Gram, A., & Boos, A. (2015). The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells. Molecular and Cellular Endocrinology, 401, 35-44. https://doi.org/10.1016/j.mce.2014.11.023
Kumar, H., & Choi, D.-K. (2015). Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway. Mediators of Inflammation, 2015, 1-11. https://doi.org/10.1155/2015/584758
Li, C., Liu, Z., Li, W., Zhang, L., Zhou, J., Sun, M., Zhou, J., Yao, W., Zhang, X., Wang, H., Tao, J., Shen, M., & Liu, H. (2020). The FSH-HIF-1α-VEGF pathway is critical for ovulation and oocyte health but not necessary for follicular growth in mice. Endocrinology, 161, bqaa038. https://doi.org/10.1210/endocr/bqaa038
Li, D., Redding, G. P., & Bronlund, J. E. (2013). Oxygen consumption by bovine granulosa cells with prediction of oxygen transport in preantral follicles. Reproduction, Fertility, and Development, 25, 1158-1164. https://doi.org/10.1071/RD12283
Li, L., Jiang, X., Zhang, Q., Dong, X., Gao, Y., He, Y., Qiao, H., Xie, F., Xie, X., & Sun, X. (2016). Neuropilin-1 is associated with clinicopathology of gastric cancer and contributes to cell proliferation and migration as multifunctional co-receptors. Journal of Experimental & Clinical Cancer Research: CR, 35, 16. https://doi.org/10.1186/s13046-016-0291-5
Li, Q., Zeng, C., Liu, H., Yung, K. W. Y., Chen, C., Xie, Q., Zhang, Y., Wan, S. W. C., Mak, B. S. W., Xia, J., Xiong, S., & Ngo, J. C. K. (2021). Protein-Protein interaction inhibitor of SRPKs alters the splicing isoforms of VEGF and inhibits angiogenesis. iScience, 24, 102423. https://doi.org/10.1016/j.isci.2021.102423
Liao, L., Zhao, X., Zhou, M., Deng, Y., Li, Y., & Peng, C. (2021). sFlt-1: A double regulator in angiogenesis-related diseases. Current Pharmaceutical Design, 27, 4160-4170. https://doi.org/10.2174/1381612827666210902155015
Lim, M., Thompson, J. G., & Dunning, K. R. (2021). Hypoxia and reproductive health: Hypoxia and ovarian function: Follicle development, ovulation, oocyte maturation. Reproduction (Cambridge, England), 161, F33-F40. https://doi.org/10.1530/REP-20-0509
Liu, J., Wang, W., Wang, L., Chen, S., Tian, B., Huang, K., Corrigan, C. J., Ying, S., Wang, W., & Wang, C. (2018). IL-33 Initiates Vascular Remodelling in Hypoxic Pulmonary Hypertension by up-Regulating HIF-1α and VEGF Expression in Vascular Endothelial Cells. EBioMedicine, 33, 196-210. https://doi.org/10.1016/j.ebiom.2018.06.003
Liu, Y. X. (2019). Regulation of follicular development and differentiation by intra-ovarian factors and endocrine hormones. Frontiers in Bioscience, 24, 983-993. https://doi.org/10.2741/4763
Macias, V., Pinzón, C., Fierro, F., Vergara, M., Martínez, D., Rosado, A., Gutiérrez, C., & Rosales-Torres, A. (2012). Identification of soluble forms of vascular endothelial growth factor receptors, sVEGFR-1 and sVEGFR-2, in bovine dominant follicles. Reproduction in Domestic Animals, 47, e39-e42. https://doi.org/10.1111/j.1439-0531.2011.01919.x
Macklon, N. S., & Fauser, B. C. J. M. (1999). Aspects of ovarian follicle development throughout life. Hormone Research in Paediatrics, 52(4), 161-170. https://doi.org/10.1159/000023456
Mamer, S. B., Wittenkeller, A., & Imoukhuede, P. I. (2020). VEGF-A splice variants bind VEGFRs with differential affinities. Scientific Reports, 10, 14413. https://doi.org/10.1038/s41598-020-71484-y
Marsano, A., Medeiros da Cunha, C. M., Ghanaati, S., Gueven, S., Centola, M., Tsaryk, R., Barbeck, M., Stuedle, C., Barbero, A., Helmrich, U., Schaeren, S., Kirkpatrick, J. C., Banfi, A., & Martin, I. (2016). Spontaneous in vivo chondrogenesis of bone marrow-derived mesenchymal progenitor cells by blocking vascular endothelial growth factor signaling. Stem Cells Translational Medicine, 5, 1730-1738. https://doi.org/10.5966/sctm.2015-0321
Martelli, A., Bernabò, N., Berardinelli, P., Russo, V., Rinaldi, C., Di Giacinto, O., Mauro, A., & Barboni, B. (2009). Vascular supply as a discriminating factor for pig preantral follicle selection. Reproduction (Cambridge, England), 137, 45-58. https://doi.org/10.1530/REP-08-0117
Mauro, A., Berardinelli, P., Russo, V., Bernabò, N., Martelli, A., Nardinocchi, D., Di Giacinto, O., Turriani, M., & Barboni, B. (2021). Effects of P4 antagonist RU486 on VEGF and its receptors' signaling during the in vivo transition from the preovulatory to periovulatory phase of ovarian follicles. International Journal of Molecular Sciences, 22, 13520. https://doi.org/10.3390/ijms222413520
McFee, R. M., Artac, R. A., McFee, R. M., Clopton, D. T., Smith, R. A. L., Rozell, T. G., & Cupp, A. S. (2009). Inhibition of vascular endothelial growth factor receptor signal transduction blocks follicle progression but does not necessarily disrupt vascular development in perinatal rat ovaries. Biology of Reproduction, 81, 966-977. https://doi.org/10.1095/BIOLREPROD.109.078071
McFee, R. M., Rozell, T. G., & Cupp, A. S. (2012). The balance of proangiogenic and antiangiogenic VEGFA isoforms regulate follicle development. Cell and Tissue Research, 349, 635-647. https://doi.org/10.1007/s00441-012-1330-y
McGee, E. A., & Hsueh, A. J. W. (2000). Initial and cyclic recruitment of ovarian follicles. Endocrine Reviews, 21, 200-214. https://doi.org/10.1210/edrv.21.2.0394
Mima, A. (2021). Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: Advantages and disadvantages. European Journal of Pharmacology, 912, 174583. https://doi.org/10.1016/j.ejphar.2021.174583
Miyake, T., Kumasawa, K., Sato, N., Takiuchi, T., Nakamura, H., & Kimura, T. (2016). Soluble VEGF receptor 1 (sFLT1) induces non-apoptotic death in ovarian and colorectal cancer cells. Scientific Reports, 6, 24853. https://doi.org/10.1038/srep24853
Moonmanee, T., Navanukraw, C., Uriyapongson, S., Kraisoon, A., Aiumlamai, S., Guntaprom, S., Rittirod, T., Borowicz, P. P., & Redmer, D. A. (2013). Relationships among vasculature, mitotic activity, and endothelial nitric oxide synthase (eNOS) in bovine antral follicles of the first follicular wave. Domestic Animal Endocrinology, 45, 11-21. https://doi.org/10.1016/j.domaniend.2013.03.002
Müller, K., Ellenberger, C., & Schoon, H. A. (2009). Histomorphological and immunohistochemical study of angiogenesis and angiogenic factors in the ovary of the mare. Research in Veterinary Science, 87, 421-431. https://doi.org/10.1016/j.rvsc.2009.04.011
Murphy, S. R., LaMarca, B. B. D., Parrish, M., Cockrell, K., & Granger, J. P. (2013). Control of soluble fms-like tyrosine-1 (sFlt-1) production response to placental ischemia/hypoxia: role of tumor necrosis factor-α. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(2), R130-R135. https://doi.org/10.1152/ajpregu.00069.2012
Nilsson, I., Shibuya, M., & Wennström, S. (2004). Differential activation of vascular genes by hypoxia in primary endothelial cells. Experimental Cell Research, 299(2), 476-485. https://doi.org/10.1016/j.yexcr.2004.06.005
Ortega-Serrano, P., Guzmán, A., Hernández-Coronado, C., Castillo-Juárez, H., & Rosales-Torres, A. (2016). Reduction in the mRNA expression of sVEGFR1 and sVEGFR2 is associated with the selection of dominant follicle in cows. Reproduction in Domestic Animals, 51, 985-991. https://doi.org/10.1111/rda.12777
Otani, N., Minami, S., Yamoto, M., Shikone, T., Otani, H., Nishiyama, R., Otani, T., & Nakano, R. (1999). The vascular endothelial growth factor/fms-like tyrosine kinase system in human ovary during the menstrual cycle and early pregnancy. The Journal of Clinical Endocrinology and Metabolism, 84, 3845-3851. https://doi.org/10.1210/jcem.84.10.6025
Park, J. E., Keller, G. A., & Ferrara, N. (1993). The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Molecular Biology of the Cell, 4(12), 1317-1326. https://doi.org/10.1091/mbc.4.12.1317
Peach, C., Mignone, V., Arruda, M., Alcobia, D., Hill, S., Kilpatrick, L., & Woolard, J. (2018). Molecular pharmacology of VEGF-A isoforms: Binding and signalling at VEGFR2. International Journal of Molecular Sciences, 19, 1264. https://doi.org/10.3390/ijms19041264
Pham, I., Uchida, T., Planes, C., Ware, L. B., Kaner, R., Matthay, M. A., & Clerici, C. (2002). Hypoxia upregulates VEGF expression in alveolar epithelial cells in vitro and in vivo. American Journal of Physiology-Lung Cellular and Molecular Physiology, 283(5), L1133-L1142. https://doi.org/10.1152/ajplung.00464.2001
Pietrowski, D., Szabo, L., Sator, M., Just, A., & Egarter, C. (2012). Ovarian hyperstimulation syndrome is correlated with a reduction of soluble VEGF receptor protein level and a higher amount of VEGF-A. Human Reproduction, 27, 196-199. https://doi.org/10.1093/humrep/der349
Pisani, F., Cammalleri, M., Dal Monte, M., Locri, F., Mola, M. G., Nicchia, G. P., Frigeri, A., Bagnoli, P., & Svelto, M. (2018). Potential role of the methylation of VEGF gene promoter in response to hypoxia in oxygen-induced retinopathy: beneficial effect of the absence of AQP4. Journal of Cellular and Molecular Medicine, 22(1), 613-627. Portico. https://doi.org/10.1111/jcmm.13348
Prahst, C., Héroult, M., Lanahan, A. A., Uziel, N., Kessler, O., Shraga-Heled, N., Simons, M., Neufeld, G., & Augustin, H. G. (2008). Neuropilin-1-VEGFR-2 complexing requires the PDZ-binding domain of neuropilin-1. Journal of Biological Chemistry, 283, 25110-25114. https://doi.org/10.1074/jbc.C800137200
Qiu, Y., Seager, M., Osman, A., Castle-Miller, J., Bevan, H., Tortonese, D. J., Murphy, D., Harper, S. J., Fraser, H. M., Donaldson, L. F., & Bates, D. O. (2012). Ovarian VEGF(165)b expression regulates follicular development, corpus luteum function and fertility. Reproduction (Cambridge, England), 143, 501-511. https://doi.org/10.1530/REP-11-0091
Redding, G. P., Bronlund, J. E., & Hart, A. L. (2007). Mathematical modelling of oxygen transport-limited follicle growth. Reproduction (Cambridge, England), 133, 1095-1106. https://doi.org/10.1530/REP-06-0171
Redding, G. P., Bronlund, J. E., & Hart, A. L. (2008). Theoretical investigation into the dissolved oxygen levels in follicular fluid of the developing human follicle using mathematical modelling. Reproduction, Fertility, and Development, 20, 408-417. https://doi.org/10.1071/rd07190
Reynolds, L. P., & Redmer, D. A. (1998). Expression of the angiogenic factors, basic fibroblast growth factor and vascular endothelial growth factor, in the ovary. Journal of Animal Science, 76, 1671-1681. https://doi.org/10.2527/1998.7661671x
Robinson, C. J., & Stringer, S. E. (2001). The splice variants of vascular endothelial growth factor (VEGF) and their receptors. Journal of Cell Science, 114, 853-865. https://doi.org/10.1242/jcs.114.5.853
Robinson, R. S., Woad, K. J., Hammond, A. J., Laird, M., Hunter, M. G., & Mann, G. E. (2009). Angiogenesis and vascular function in the ovary. Reproduction (Cambridge, England), 138, 869-881. https://doi.org/10.1530/REP-09-0283
Rodgers, R. J., & Irving-Rodgers, H. F. (2010). Formation of the ovarian follicular antrum and follicular fluid. Biology of Reproduction, 82, 1021-1029. https://doi.org/10.1095/biolreprod.109.082941
Rosales-Torres, A. M., Alonso, I., Vergara, M., Romano, M. C., Castillo-Juárez, H., Ávalos, A., Rosado, A., & Gutiérrez, C. G. (2010). Vascular endothelial growth factor isoforms 120, 164 and 205 are reduced with atresia in ovarian follicles of sheep. Animal Reproduction Science, 122, 111-117. https://doi.org/10.1016/j.anireprosci.2010.08.002
Rosales-Torres, A. M., & Guzmán, A. (2012). Role of vascular endothelial growth factor (VEGF) and its receptors during the ovarian cycle. Review. Revista Mexicana de Ciencias Pecuarias, 1, 89-111.
Rosales-Torres, A. M., Guzmán, A., & Gutiérrez, A. C. (2012). Desarrollo folicular en rumiantes domésticos. Tropical and Subtropical Agroecosystem, 1, 147-160.
Roskoski, R. Jr. (2017). Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacological Research, 120, 116-132. https://doi.org/10.1016/j.phrs.2017.03.010
Roy, S., Bag, A. K., Singh, R. K., Talmadge, J. E., Batra, S. K., & Datta, K. (2017). Multifaceted role of neuropilins in the immune system: Potential targets for immunotherapy. Frontiers in Immunology, 8, 1228. https://doi.org/10.3389/fimmu.2017.01228
Sallinen, H., Anttila, M., Narvainen, J., Koponen, J., Hamalainen, K., Kholova, I., Heikura, T., Toivanen, P., Kosma, V. M., Heinonen, S., Alitalo, K., & Yla-Herttuala, S. (2009). Antiangiogenic gene therapy with soluble VEGFR-1, -2, and -3 reduces the growth of solid human ovarian carcinoma in mice. Molecular Therapy, 17, 278-284. https://doi.org/10.1038/mt.2008.258
Sasagawa, T., Nagamatsu, T., Morita, K., Mimura, N., Iriyama, T., Fujii, T., & Shibuya, M. (2018). HIF-2α, but not HIF-1α, mediates hypoxia-induced up-regulation of Flt-1 gene expression in placental trophoblasts. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-35745-1
Sato, N., Kumasawa, K., Yamashita, M., Miyake, T., Nakamura, H., & Kimura, T. (2020). Therapeutic potential of combination therapy of soluble VEGF receptor 1 and conventional chemotherapy for ovarian cancer growth. Journal of Obstetrics and Gynaecology Research, 46, 636-645. https://doi.org/10.1111/jog.14205
Seekallu, S. V., Toosi, B. M., Grazul-Bilska, A. T., & Rawlings, N. C. (2010). Markers of ovarian antral follicular development in sheep: Comparison of follicles destined to ovulate from the final or penultimate follicular wave of the estrous cycle. Reproduction (Cambridge, England), 140, 559-568. https://doi.org/10.1530/REP-10-0064
Shaik, F., Cuthbert, G., Homer-Vanniasinkam, S., Muench, S., Ponnambalam, S., & Harrison, M. (2020). Structural basis for vascular endothelial growth factor receptor activation and implications for disease therapy. Biomolecules, 10, 1673. https://doi.org/10.3390/biom10121673
Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L., & Schuh, A. C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376, 62-66. https://doi.org/10.1038/376062a0
Shibuya, M. (2013). Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. Journal of Biochemistry, 153, 13-19. https://doi.org/10.1093/jb/mvs136
Shibuya, M. (2015). VEGF-VEGFR system as a target for suppressing inflammation and other diseases. Endocrine, Metabolic & Immune Disorders Drug Targets, 15, 135-144. https://doi.org/10.2174/1871530315666150316121956
Shimizu, T. (2003). Induction of follicular development by direct single injection of vascular endothelial growth factor gene fragments into the ovary of miniature gilts. Biology of Reproduction, 69, 1388-1393. https://doi.org/10.1095/biolreprod.103.016311
Shimizu, T., Iijima, K., Miyabayashi, K., Ogawa, Y., Miyazaki, H., Sasada, H., & Sato, E. (2007). Effect of direct ovarian injection of vascular endothelial growth factor gene fragments on follicular development in immature female rats. Reproduction (Cambridge, England), 134, 677-682. https://doi.org/10.1530/REP-07-0268
Shimizu, T., Jayawardana, B. C., Nishimoto, H., Kaneko, E., Tetsuka, M., & Miyamoto, A. (2006). Hormonal regulation and differential expression of neuropilin (NRP)-1 and NRP-2 genes in bovine granulosa cells. Reproduction (Cambridge, England), 131, 555-559. https://doi.org/10.1530/rep.1.00937
Shimizu, T., Jayawardana, B. C., Tetsuka, M., & Miyamoto, A. (2007). Differential effect of follicle-stimulating hormone and estradiol on expressions of vascular endothelial growth factor (VEGF) 120, VEGF164 and their receptors in bovine granulosa cells. Journal of Reproduction and Development, 53, 105-112. https://doi.org/10.1262/jrd.18088
Shimizu, T., Jiang, J. Y., Sasada, H., & Sato, E. (2002). Changes of messenger RNA expression of angiogenic factors and related receptors during follicular development in gilts. Biology of Reproduction, 67, 1846-1852. https://doi.org/10.1095/biolreprod.102.006734
Shinagawa, M., Tamura, I., Maekawa, R., Sato, S., Shirafuta, Y., Mihara, Y., Okada-Matsumoto, M., Taketani, T., Asada, H., Tamura, H., & Sugino, N. (2019). C/EBPβ regulates Vegf gene expression in granulosa cells undergoing luteinization during ovulation in female rats. Scientific Reports, 9, 714. https://doi.org/10.1038/s41598-018-36566-y
Shiratsuki, S., Hara, T., Munakata, Y., Shirasuna, K., Kuwayama, T., & Iwata, H. (2016). Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells. Molecular and Cellular Endocrinology, 437, 75-85. https://doi.org/10.1016/j.mce.2016.08.010
Stacker, S. A., Caesar, C., Baldwin, M. E., Thornton, G. E., Williams, R. A., Prevo, R., Jackson, D. G., Nishikawa, S., Kubo, H., & Achen, M. G. (2001). VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Medicine, 7, 186-191. https://doi.org/10.1038/84635
Stevens, M., & Oltean, S. (2019). Modulation of receptor tyrosine kinase activity through alternative splicing of ligands and receptors in the VEGF-A/VEGFR axis. Cells, 8, 288. https://doi.org/10.3390/cells8040288
Suzuki, T., Sasano, H., Takaya, R., Fukaya, T., Yajima, A., & Nagura, H. (1998). Cyclic changes of vasculature and vascular phenotypes in normal human ovaries. Human Reproduction, 13, 953-959. https://doi.org/10.1093/humrep/13.4.953
Tang, Z., Zhang, Z., Lin, Q., Xu, R., Chen, J., Wang, Y., Zhang, Y., Tang, Y., Shi, C., Liu, Y., Yang, H., & Wang, Z. (2021). HIF-1α/BNIP3-Mediated Autophagy Contributes to the Luteinization of Granulosa Cells During the Formation of Corpus Luteum. Frontiers in Cell and Developmental Biology, 8. https://doi.org/10.3389/fcell.2020.619924
Taylor, P. D., Wilson, H., Hillier, S. G., Wiegand, S. J., & Fraser, H. M. (2007). Effects of inhibition of vascular endothelial growth factor at time of selection on follicular angiogenesis, expansion, development and atresia in the marmoset. Molecular Human Reproduction, 13, 729-736. https://doi.org/10.1093/molehr/gam056
Thompson, J. G., Brown, H. M., Kind, K. L., & Russell, D. L. (2015). The ovarian antral follicle: Living on the edge of hypoxia or not? Biology of Reproduction, 92, 153. https://doi.org/10.1095/biolreprod.115.128660
Torres-Ortiz, M. C., Gutiérrez-Ospina, G., Gómez-Chavarín, M., Murcia, C., Alonso-Morales, R. A., & Perera-Marín, G. (2017). The presence of VEGF and Notch2 during preantral-antral follicular transition in infantile rats: Anatomical evidence and its implications. General and Comparative Endocrinology, 249(249), 82-92. https://doi.org/10.1016/j.ygcen.2017.05.006
Trau, H. A., Brännström, M., Curry, T. E., Jr., & Duffy, D. M. (2016). Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Human Reproduction, 31, dev320. https://doi.org/10.1093/humrep/dev320
Trau, H. A., Davis, J. S., & Duffy, D. M. (2015). Angiogenesis in the primate ovulatory follicle is stimulated by luteinizing hormone via prostaglandin E2. Biology of Reproduction, 92(1), 15. https://doi.org/10.1095/biolreprod.114.123711
Uemura, A., Fruttiger, M., D'Amore, P. A., De Falco, S., Joussen, A. M., Sennlaub, F., Brunck, L. R., Johnson, K. T., Lambrou, G. N., Rittenhouse, K. D., & Langmann, T. (2021). VEGFR1 signaling in retinal angiogenesis and microinflammation. Progress in Retinal and Eye Research, 84, 100954. https://doi.org/10.1016/j.preteyeres.2021.100954
Ulyatt, C., Walker, J., & Ponnambalam, S. (2011). Hypoxia differentially regulates VEGFR1 and VEGFR2 levels and alters intracellular signaling and cell migration in endothelial cells. Biochemical and Biophysical Research Communications, 404(3), 774-779. https://doi.org/10.1016/j.bbrc.2010.12.057
Van Blerkom, J., Antczak, M., & Schrader, R. (1997). The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: Association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Human Reproduction, 12, 1047-1055. https://doi.org/10.1093/humrep/12.5.1047
Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., & Heldin, C. H. (1994). Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. Journal of Biological Chemistry, 269, 26988-26995.
Wang, X., Bove, A. M., Simone, G., & Ma, B. (2020). Molecular bases of VEGFR-2-mediated physiological function and pathological role. Frontiers in Cell and Developmental Biology, 8, 8599281. https://doi.org/10.3389/fcell.2020.599281
Watkins, W. M., McCollum, G. W., Savage, S. R., Capozzi, M. E., Penn, J. S., & Morrison, D. G. (2013). Hypoxia-induced expression of VEGF splice variants and protein in four retinal cell types. Experimental Eye Research, 116, 240-246. https://doi.org/10.1016/j.exer.2013.09.014
Webb, R., Buratini, J., Hernandez-Medrano, J. H., Gutierrez, C. G., & Campbell, B. K. (2016). Follicle development and selection: Past, present and future. Animal Reproduction, 13, 234-249. https://doi.org/10.21451/1984-3143-AR883
Webb, R., Campbell, B. K., Garverick, H. A., Gong, J. G., Gutierrez, C. G., & Armstrong, D. G. (1999). Molecular mechanisms regulating follicular recruitment and selection. Journal of Reproduction and Fertility. Supplement, 54, 33-48.
Webb, R., Garnsworthy, P. C., Gong, J. G., & Armstrong, D. G. (2004). Control of follicular growth: Local interactions and nutritional influences. Journal of Animal Science, 82(E-Suppl.), 63-74. https://doi.org/10.2527/2004.8213_supplE63x
Webb, R., Nicholas, B., Gong, J. G., Campbell, B. K., Gutierrez, C. G., Garverick, H. A., & Armstrong, D. G. (2003). Mechanisms regulating follicular development and selection of the dominant follicle. Reproduction (Cambridge, England). Supplement, 61, 71-90.
Williams, C. J., & Erickson, G. F. (2000). Morphology and Physiology of the Ovary. 2012. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. https://www.ncbi.nlm.nih.gov/books/NBK278951/
Wiszniak, S., & Schwarz, Q. (2021). Exploring the intracrine functions of VEGF-A. Biomolecules, 11, 128. https://doi.org/10.3390/biom11010128
Wulff, C., Wiegand, S. J., Saunders, P. T. K., Scobie, G. A., & Fraser, H. M. (2001). Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor Trap(A40)). Endocrinology, 142, 3244-3254. https://doi.org/10.1210/endo.142.7.8258
Xu, X., Mu, L., Li, L., Liang, J., Zhang, S., Jia, L., Yang, X., Dai, Y., Zhang, J., Wang, Y., Niu, S., Xia, G., Yang, Y., Zhang, Y., Cao, Y., & Zhang, H. (2022). Imaging and tracing the pattern of adult ovarian angiogenesis implies a strategy against female reproductive aging. Science Advances, 8(2), https://doi.org/10.1126/sciadv.abi8683
Xin, H., Zhong, C., Nudleman, E., & Ferrara, N. (2016). Evidence for pro-angiogenic functions of VEGF-Ax. Cell, 167, 275-284. https://doi.org/10.1016/j.cell.2016.08.054
Yamamoto, S., Konishi, I., Tsuruta, Y., Nanbu, K., Mandai, M., Kuroda, H., Matsushita, K., Hamid, A. A., Yura, Y., & Mori, T. (1997). Expression of vascular endothelial growth factor (VEGF) during folliculogenesis and corpus luteum formation in the human ovary. Gynecological Endocrinology, 11, 371-381. https://doi.org/10.3109/09513599709152564
Yang, F., Jin, C., Jiang, Y., Li, J., Di, Y., & Fu, D. L. (2011). Potential role of soluble VEGFR-1 in antiangiogenesis therapy for cancer. Expert Review of Anticancer Therapy, 11, 541-549. https://doi.org/10.1586/era.10.171
Yang, M., Wang, L., Wang, X., Wang, X., Yang, Z., & Li, J. (2017). IL-6 promotes FSH-induced VEGF expression through JAK/STAT3 signaling pathway in bovine granulosa cells. Cellular Physiology and Biochemistry, 44, 293-302. https://doi.org/10.1159/000484885
Yang, M. Y., & Fortune, J. E. (2007). Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Molecular Reproduction and Development, 74(9), 1095-1104. https://doi.org/10.1002/mrd.20633
Zamora-Gutiérrez, D., Guzmán, A., Hernández-Coronado, C. G., Castillo-Juárez, H., Fierro, F., Gutiérrez, C. G., Bojalil, R., & Rosales-Torres, A. M. (2019). Co-ordinated expression of the VEGF system components in granulosa cells to develop a proangiogenic autocrine milieu during ovarian follicle development. Molecular Reproduction and Development, 86, 156-165. https://doi.org/10.1002/mrd.23089
Zeebaree, B. K., Kwong, W. Y., Mann, G. E., Gutierrez, C. G., & Sinclair, K. D. (2018). Physiological responses of cultured bovine granulosa cells to elevated temperatures under low and high oxygen in the presence of different concentrations of melatonin. Theriogenology, 105, 107-114. https://doi.org/10.1016/j.theriogenology.2017.09.014
Zelezni, A. J., Schuler, H. M., & Reichert, L. E. (1981). Gonadotropin-binding sites in the rhesus monkey ovary: Role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle. Endocrinology, 109, 356-362. https://doi.org/10.1210/endo-109-2-356
Zeng, H., Dvorak, H. F., & Mukhopadhyay, D. (2001). Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) receptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. Journal of Biological Chemistry, 276, 26969-26979. https://doi.org/10.1074/jbc.M103213200

Auteurs

Adrian Guzmán (A)

Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México.

Cyndi G Hernández-Coronado (CG)

Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México.

Carlos G Gutiérrez (CG)

Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México.

Ana M Rosales-Torres (AM)

Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH