A specific anti-COVID-19 BNT162b2 vaccine-induced early innate immune signature positively correlates with the humoral protective response in healthy and multiple sclerosis vaccine recipients.
SARS‐CoV‐2
humoral response
innate immunity
mRNA vaccine
Journal
Clinical & translational immunology
ISSN: 2050-0068
Titre abrégé: Clin Transl Immunology
Pays: Australia
ID NLM: 101638268
Informations de publication
Date de publication:
2023
2023
Historique:
received:
08
08
2022
revised:
24
10
2022
revised:
01
12
2022
accepted:
05
12
2022
entrez:
27
3
2023
pubmed:
28
3
2023
medline:
28
3
2023
Statut:
epublish
Résumé
The very rapidly approved mRNA-based vaccines against SARS-CoV-2 spike glycoprotein, including Pfizer-BioNTech BNT162b2, are effective in protecting from severe coronavirus disease 2019 (COVID-19) in immunocompetent population. However, establishing the duration and identifying correlates of vaccine-induced protection will be crucial to optimise future immunisation strategies. Here, we studied in healthy vaccine recipients and people with multiple sclerosis (pwMS), undergoing different therapies, the regulation of innate immune response by mRNA vaccination in order to correlate it with the magnitude of vaccine-induced protective humoral responses. Healthy subjects ( We identified an early immune module composed of the IFN-inducible genes Mx1, OAS1 and IRF1, the serum cytokines IL-15, IL-6, TNF-α and IFN-γ and the chemokines IP-10, MCP-1 and MIG, induced 1 day post second and third BNT162b2 vaccine doses, strongly correlating with magnitude of humoral response to vaccination in healthy and MS vaccinees. Moreover, induction of the early immune module was dramatically affected in pwMS treated with fingolimod and ocrelizumab, both groups unable to induce a protective humoral response to COVID-19 vaccine. Overall, this study suggests that the vaccine-induced early regulation of innate immunity is mediated by IFN signalling, impacts on the magnitude of adaptive responses and it might be indicative of vaccine-induced humoral protection.
Identifiants
pubmed: 36969367
doi: 10.1002/cti2.1434
pii: CTI21434
pmc: PMC10036198
doi:
Types de publication
Journal Article
Langues
eng
Pagination
e1434Informations de copyright
© 2023 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
Déclaration de conflit d'intérêts
Severa M, Rizzo F, Ricci D, Etna MP, Sinigaglia A, Buscarinu MC, Valdarchi C, Piubelli C, Gobbi F, Ristori G, Riccetti S, Cola G, Palmerini P, Rosato A, Balducci S, Barzon L and Coccia EM declare no conflict of interest. Salvetti M received research support and consulting fees from Biogen, Merck, Novartis, Roche, Sanofi, Teva. Landi D received travel funding from Biogen, Merck Serono, Sanofi‐Genzyme and Teva, honoraria for speaking from Sanofi‐Genzyme and Teva, and consultation fees from Merck Serono and Teva. She is sub‐investigator in clinical trials being conducted for Biogen, Merck Serono, Novartis, Roche and Teva. Girolama MA is an Advisory Board member of Biogen Idec, Genzyme, Merck‐Serono, Novartis, Teva and received honoraria for speaking or consultation fees from Almirall, Bayer Schering, Biogen Idec, Merck Serono, Novartis, Sanofi‐Genzyme, Roche, Mylan, Teva. She is the principal investigator in clinical trials for Actelion, Biogen Idec, Merck Serono, Mitsubishi, Novartis, Roche, Sanofi‐Genzyme, Merck Serono and Teva.
Références
Nat Immunol. 2011 Jul 10;12(8):786-95
pubmed: 21743478
Neurology. 2022 Feb 1;98(5):e541-e554
pubmed: 34810244
Viruses. 2021 Mar 05;13(3):
pubmed: 33807957
Nat Immunol. 2009 Jan;10(1):116-125
pubmed: 19029902
J Autoimmun. 2019 Jul;101:1-16
pubmed: 31047767
Nat Rev Immunol. 2021 Apr;21(4):195-197
pubmed: 33674759
Int J Infect Dis. 2022 Jan;114:252-260
pubmed: 34800687
Int J Mol Sci. 2021 Jun 29;22(13):
pubmed: 34209845
Nature. 2021 Jul;595(7868):572-577
pubmed: 34044428
Cell Rep. 2021 Aug 10;36(6):109504
pubmed: 34352226
Ther Adv Neurol Disord. 2021 Apr 22;14:17562864211012835
pubmed: 34035836
Nature. 2020 Oct;586(7830):594-599
pubmed: 32998157
Int J Mol Sci. 2022 Aug 10;23(16):
pubmed: 36012146
Cell. 2022 Mar 17;185(6):1025-1040.e14
pubmed: 35148837
Front Immunol. 2022 Jan 17;12:796482
pubmed: 35111162
EBioMedicine. 2022 Jul;81:104102
pubmed: 35759920
Clin Infect Dis. 2012 Jun;54(11):1615-7
pubmed: 22437237
Nature. 2021 Aug;596(7872):410-416
pubmed: 34252919
Front Med (Lausanne). 2022 May 19;9:820544
pubmed: 35665358
EBioMedicine. 2021 Oct;72:103581
pubmed: 34563483
Nat Med. 2021 Nov;27(11):1990-2001
pubmed: 34522051
Nat Med. 2021 Jul;27(7):1147-1148
pubmed: 34239135
Mult Scler. 2018 Feb;24(2):127-139
pubmed: 28273784
Mult Scler. 2022 Oct;28(12):1937-1943
pubmed: 35723265
PLoS Pathog. 2021 Sep 2;17(9):e1009878
pubmed: 34473805
Nat Med. 2021 Nov;27(11):2025-2031
pubmed: 34526698
Science. 2022 Jan 07;375(6576):43-50
pubmed: 34812653
Cell. 2022 Apr 28;185(9):1556-1571.e18
pubmed: 35447072
Nat Immunol. 2022 Apr;23(4):543-555
pubmed: 35288714
Nat Immunol. 2014 Feb;15(2):195-204
pubmed: 24336226
Nat Rev Drug Discov. 2018 Apr;17(4):261-279
pubmed: 29326426
J Infect Dis. 2011 Apr 1;203(7):921-9
pubmed: 21357945