Control of intramolecular singlet fission in a pentacene dimer by hydrostatic pressure.
Journal
Chemical science
ISSN: 2041-6520
Titre abrégé: Chem Sci
Pays: England
ID NLM: 101545951
Informations de publication
Date de publication:
22 Mar 2023
22 Mar 2023
Historique:
received:
18
01
2023
accepted:
23
02
2023
entrez:
27
3
2023
pubmed:
28
3
2023
medline:
28
3
2023
Statut:
epublish
Résumé
Singlet fission (SF), which produces two triplet excitons from a singlet exciton, has been identified as a novel nanointerface for efficient (photo)energy conversion. This study aims to control exciton formation in a pentacene dimer through intramolecular SF using hydrostatic pressure as an external stimulus. We reveal the hydrostatic-pressure-induced formation and dissociation processes of correlated triplet pairs (TT) in SF by means of pressure-dependent UV/vis and fluorescence spectrometry and fluorescence lifetime and nanosecond transient absorption measurements. The photophysical properties obtained under hydrostatic pressure suggested distinct acceleration of the SF dynamics by microenvironmental desolvation, the volumetric compaction of the TT intermediate based on solvent reorientation toward an individual triplet (T
Identifiants
pubmed: 36970074
doi: 10.1039/d3sc00312d
pii: d3sc00312d
pmc: PMC10034212
doi:
Types de publication
Journal Article
Langues
eng
Pagination
3293-3301Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
There are no conflicts to declare.
Références
J Chem Phys. 2011 Dec 7;135(21):214508
pubmed: 22149803
J Am Chem Soc. 2021 Feb 10;143(5):2361-2371
pubmed: 33512153
Chem Soc Rev. 2004 Nov 30;33(9):589-98
pubmed: 15592624
Chem Rev. 2014 Jul 23;114(14):7239-67
pubmed: 24884274
J Am Chem Soc. 2021 Oct 27;143(42):17388-17394
pubmed: 34647732
Chem Rev. 2015 Nov 11;115(21):11718-940
pubmed: 26492387
J Am Chem Soc. 2019 Sep 18;141(37):14720-14727
pubmed: 31529955
Chem Rev. 1998 Sep 24;98(6):2167-2290
pubmed: 11848963
J Am Chem Soc. 2013 Nov 6;135(44):16680-8
pubmed: 24148017
Nature. 2019 Jul;571(7763):90-94
pubmed: 31270480
J Phys Chem B. 2021 Jun 16;:
pubmed: 34133180
Chem Rev. 2019 Mar 27;119(6):4261-4292
pubmed: 30721032
Acc Chem Res. 2017 Oct 17;50(10):2487-2495
pubmed: 28930435
Rev Sci Instrum. 2018 Nov;89(11):111501
pubmed: 30501343
Chem Soc Rev. 2021 Mar 7;50(5):3485-3518
pubmed: 33496309
Nat Chem. 2009 Nov;1(8):605-10
pubmed: 21378953
J Phys Chem Lett. 2018 Jun 21;9(12):3354-3360
pubmed: 29847939
J Am Chem Soc. 2021 Sep 1;143(34):13749-13758
pubmed: 34397219
J Phys Chem A. 2016 Mar 24;120(11):1867-75
pubmed: 26930127
J Am Chem Soc. 2016 Dec 14;138(49):16069-16080
pubmed: 27960344
J Am Chem Soc. 2021 Jun 16;:
pubmed: 34133165
Chem Rev. 2015 Aug 12;115(15):7840-92
pubmed: 25719867
Chem Soc Rev. 2014 Jul 7;43(13):4300-11
pubmed: 24686464
Chem Soc Rev. 2017 Feb 6;46(3):915-1016
pubmed: 28117864
Chem Rev. 2010 Nov 10;110(11):6891-936
pubmed: 21053979
Acc Chem Res. 2022 Jun 21;55(12):1748-1762
pubmed: 35657708
Nat Commun. 2016 Dec 07;7:13622
pubmed: 27924819
J Am Chem Soc. 2019 Nov 6;141(44):17558-17570
pubmed: 31604015
J Phys Chem B. 2020 Oct 22;124(42):9411-9419
pubmed: 32981315
Chemistry. 2013 Mar 25;19(13):4327-34
pubmed: 23362005
J Phys Chem Lett. 2021 Jul 22;12(28):6457-6463
pubmed: 34236876