Machine learning-driven protein engineering: a case study in computational drug discovery.

DNA DNA library synthesis ML‐driven drug discovery biology computing computational drug discovery deep learning directed evolution drugs generation sequencing great expectation high‐quality datasets high‐throughput display learning (artificial intelligence) learnings machine learning‐driven protein engineering molecular biophysics multiple important protein characteristics optimisation proteins selection data generation significant efficiency gains silico models ultra‐high throughput selections

Journal

Engineering biology
ISSN: 2398-6182
Titre abrégé: Eng Biol
Pays: United States
ID NLM: 9918539388906676

Informations de publication

Date de publication:
Mar 2020
Historique:
received: 13 12 2019
revised: 18 02 2020
accepted: 24 02 2020
entrez: 27 3 2023
pubmed: 16 3 2020
medline: 16 3 2020
Statut: epublish

Résumé

Research and development in drug discovery will need to find significant efficiency gains if the industry is to continue generating novel drugs. There is great expectation for machine learning (ML) to provide this boost in R&D productivity, but to harness the full potential of ML, the generation of new, high-quality datasets will be necessary. Here, the authors present a platform that combines high-throughput display and selection data generation with ML. More specifically, deep learning is used to inform the directed evolution of novel biotherapeutics using DNA library synthesis, ultra-high throughput selections, and next generation sequencing. By combining the learnings of multiple

Identifiants

pubmed: 36970228
doi: 10.1049/enb.2019.0019
pii: ENB2BF00047
pmc: PMC9996701
doi:

Types de publication

Journal Article

Langues

eng

Pagination

7-9

Informations de copyright

© 2020 The Institution of Engineering and Technology.

Références

Cell. 2018 Jun 14;173(7):1581-1592
pubmed: 29887378
J Health Econ. 2016 May;47:20-33
pubmed: 26928437
PLoS Genet. 2019 Apr 10;15(4):e1008079
pubmed: 30969963
Drug Discov Today. 2017 Nov;22(11):1680-1685
pubmed: 28881183
Nat Rev Drug Discov. 2012 Mar 01;11(3):191-200
pubmed: 22378269
Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10701-5
pubmed: 10984501
Nat Methods. 2019 Aug;16(8):687-694
pubmed: 31308553
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):944-949
pubmed: 28096333
Biostatistics. 2019 Apr 1;20(2):273-286
pubmed: 29394327
FEBS J. 2005 May;272(10):2591-601
pubmed: 15885107
Nat Rev Mol Cell Biol. 2009 Dec;10(12):866-76
pubmed: 19935669
Curr Opin Biotechnol. 1997 Aug;8(4):503-8
pubmed: 9265732

Auteurs

Harry F Rickerby (HF)

LabGenius G06-G09 Cocoa Studios, 100 Drummond Road London UK.

Katya Putintseva (K)

LabGenius G06-G09 Cocoa Studios, 100 Drummond Road London UK.

Christopher Cozens (C)

LabGenius G06-G09 Cocoa Studios, 100 Drummond Road London UK.

Classifications MeSH