Research progress of endogenous hematoma absorption after intracerebral hemorrhage.
haematoma absorption
intracerebral hemorrhage
microglia
phagocytosis
scavenger receptor
Journal
Frontiers in neurology
ISSN: 1664-2295
Titre abrégé: Front Neurol
Pays: Switzerland
ID NLM: 101546899
Informations de publication
Date de publication:
2023
2023
Historique:
received:
04
12
2022
accepted:
16
02
2023
entrez:
27
3
2023
pubmed:
28
3
2023
medline:
28
3
2023
Statut:
epublish
Résumé
Non-traumatic intraparenchymal brain hemorrhage is referred to as intracerebral hemorrhage (ICH). Although ICH is associated with a high rate of disability and case fatality, active intervention can significantly lower the rate of severe disability. Studies have shown that the speed of hematoma clearance after ICH determines the patient's prognosis. Following ICH, depending on the hematoma volume and mass effect, either surgical- or medication-only conservative treatment is chosen. The goal of promoting endogenous hematoma absorption is more relevant because surgery is only appropriate for a small percentage of patients, and open surgery can cause additional trauma to patients. The primary method of removing hematoma after ICH in the future will involve understanding how to produce and manage macrophage/microglial endogenous phagocytic hematomas. Therefore, it is necessary to elucidate the regulatory mechanisms and key targets for clinical purposes.
Identifiants
pubmed: 36970539
doi: 10.3389/fneur.2023.1115726
pmc: PMC10036389
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
1115726Informations de copyright
Copyright © 2023 Fu, Zhang, Wu, Zhou, Yin, Chen and Dan.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
CNS Neurosci Ther. 2019 Oct;25(10):1113-1125
pubmed: 31578825
Brain Res Bull. 2017 Sep;134:24-29
pubmed: 28655601
Neuropharmacology. 2018 Jan;128:244-254
pubmed: 29054366
J Cereb Blood Flow Metab. 2021 May;41(5):958-974
pubmed: 32703113
Neurosci Bull. 2021 Oct;37(10):1412-1426
pubmed: 34142331
Transl Stroke Res. 2012 Jul;3(1):s125-s131
pubmed: 23259009
Transl Stroke Res. 2021 Oct;12(5):858-865
pubmed: 33094829
Brain Behav Immun. 2021 May;94:437-457
pubmed: 33588074
Ther Adv Neurol Disord. 2020 May 14;13:1756286420921083
pubmed: 32477427
Stroke. 2018 Dec;49(12):3020-3029
pubmed: 30571407
Aging Cell. 2019 Dec;18(6):e13022
pubmed: 31400088
Stroke. 2016 Feb;47(2):505-11
pubmed: 26732568
Pharmacol Res. 2020 Nov;161:105122
pubmed: 32791262
Stroke. 2017 May;48(5):1369-1375
pubmed: 28360115
Neuroscience. 2020 Jun 15;437:161-171
pubmed: 32224230
Blood. 2012 Jun 7;119(23):5512-21
pubmed: 22427202
Free Radic Biol Med. 2007 Aug 1;43(3):408-14
pubmed: 17602956
J Cereb Blood Flow Metab. 2018 Feb;38(2):262-273
pubmed: 28358264
FASEB J. 2020 Feb;34(2):2774-2791
pubmed: 31912591
Front Mol Neurosci. 2022 Jun 16;15:927334
pubmed: 35782383
Front Cell Neurosci. 2019 Aug 07;13:349
pubmed: 31440142
Transl Stroke Res. 2020 Jun;11(3):541-551
pubmed: 31664629
Stroke. 2019 Jun;50(6):1539-1547
pubmed: 31084334
J Cereb Blood Flow Metab. 2017 Jan;37(1):25-38
pubmed: 27317654
In Vitro Cell Dev Biol Anim. 2020 Dec;56(10):878-887
pubmed: 33150481
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32679-32690
pubmed: 33293423
FEBS J. 2010 Sep;277(17):3526-37
pubmed: 20716178
J Exp Med. 2018 Oct 1;215(10):2636-2654
pubmed: 30190288
Behav Neurol. 2018 Jul 09;2018:7646104
pubmed: 30123388
Biotechnol Appl Biochem. 2023 Feb;70(1):137-147
pubmed: 35353924
Front Neurosci. 2022 May 12;16:791035
pubmed: 35645722
Arch Biochem Biophys. 2018 Dec 15;660:1-10
pubmed: 30316763
Front Neurol. 2020 Apr 28;11:313
pubmed: 32411082
Immunol Rev. 2016 Jan;269(1):44-59
pubmed: 26683144
Stroke. 2022 Jun;53(6):2058-2068
pubmed: 35514286
Int J Clin Exp Pathol. 2015 Sep 01;8(9):10156-63
pubmed: 26617723
Annu Rev Biophys. 2010;39:407-27
pubmed: 20192774
J Cell Mol Med. 2018 Feb;22(2):768-777
pubmed: 29278306
Front Neurosci. 2018 Dec 18;12:977
pubmed: 30631264
Front Pharmacol. 2022 Apr 20;13:869300
pubmed: 35517804
J Inflamm (Lond). 2020 Apr 25;17:17
pubmed: 32351331
Cell Mol Life Sci. 2022 Apr 7;79(5):224
pubmed: 35389112
J Clin Invest. 2018 Feb 1;128(2):607-624
pubmed: 29251628
J Neuroinflammation. 2021 Feb 15;18(1):43
pubmed: 33588866
PLoS One. 2015 Apr 13;10(4):e0122371
pubmed: 25875777
J Neuroinflammation. 2021 Aug 23;18(1):184
pubmed: 34425835
J Neurochem. 2015 Apr;133(1):144-52
pubmed: 25328080
Redox Biol. 2022 Oct;56:102442
pubmed: 35998432
Int Immunopharmacol. 2020 Jun;83:106396
pubmed: 32193103
J Cereb Blood Flow Metab. 2017 Apr;37(4):1299-1310
pubmed: 27317656
Transl Stroke Res. 2021 Aug;12(4):660-675
pubmed: 32918259
Methods Mol Biol. 2019;1966:211-224
pubmed: 31041750
Stroke. 2021 May;52(5):1798-1808
pubmed: 33840225
Front Immunol. 2022 Jun 23;13:920754
pubmed: 35812425
J Exp Med. 2001 Apr 2;193(7):855-62
pubmed: 11283158
J Biol Chem. 2013 Oct 25;288(43):31139-53
pubmed: 24022490
Stroke. 2016 Jun;47(6):1626-31
pubmed: 27125525
Oxid Med Cell Longev. 2013;2013:523652
pubmed: 23781295
J Int Med Res. 2016 Jun;44(3):419-32
pubmed: 27020596
Antioxid Redox Signal. 2013 Jun 10;18(17):2352-63
pubmed: 22900885
J Neuroinflammation. 2017 Aug 18;14(1):163
pubmed: 28821266
Int J Stroke. 2022 Apr;17(4):425-433
pubmed: 33739197
Front Physiol. 2014 Jan 30;5:9
pubmed: 24523696
J Immunol. 2014 Jun 15;192(12):5984-92
pubmed: 24808360
CNS Neurosci Ther. 2022 Nov;28(11):1800-1813
pubmed: 35876247
Neurotherapeutics. 2020 Oct;17(4):1940-1953
pubmed: 32783091
J Clin Invest. 2001 Sep;108(6):785-91
pubmed: 11560944
CNS Neurosci Ther. 2015 Apr;21(4):357-66
pubmed: 25430543
Fundam Clin Pharmacol. 2021 Aug;35(4):634-644
pubmed: 33278834
J Surg Res. 2014 Sep;191(1):51-7
pubmed: 24746951
Exp Neurol. 2019 Aug;318:244-250
pubmed: 31078524
Transl Res. 2020 Mar;217:61-74
pubmed: 31951826